Utilization of Google Earth Engine and DSAS to Monitor Coastal Change in the Banyuasin Estuary

Authors

Heron Surbakti , Raisyah Salsabilah , Riris Aryawati , Isnaini , Robinson Sitepu

DOI:

10.29303/jppipa.v11i6.10922

Published:

2025-06-25

Issue:

Vol. 11 No. 6 (2025): June

Keywords:

Accretion, Banyuasin estuary, Digital shoreline analysis system (DSAS), Google earth engine (GEE), Shoreline change

Research Articles

Downloads

How to Cite

Surbakti, H., Salsabilah, R., Aryawati, R., Isnaini, & Sitepu, R. (2025). Utilization of Google Earth Engine and DSAS to Monitor Coastal Change in the Banyuasin Estuary. Jurnal Penelitian Pendidikan IPA, 11(6), 252–262. https://doi.org/10.29303/jppipa.v11i6.10922

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Abstract

This study examines shoreline dynamics in the Banyuasin Estuary, South Sumatra, Indonesia, by integrating multi-decadal satellite imagery (1989-2019) with field-based sedimentation measurements. The research employs Google Earth Engine (GEE) for satellite data processing, FES 2014 tidal corrections to address tidal variations, and the Digital Shoreline Analysis System (DSAS) for precise shoreline change analysis. The primary objective is to comprehensively understand coastline shifts and sediment deposition in stabilising coastal zones. The findings reveal significant shoreline accretion, with net accretion of 2,012 hectares and prominent shoreline advancements at Anakan Island (2,012.33 meters, 118.98 meters/year), while regions such as Sembilang National Park and southern Payung Island exhibited notable erosion (322.71 meters, 10.8 meters/year). The Banyuasin River estuary shifted from notable to extreme accretion phases, contrasting with the more stable shoreline dynamics in the Musi River estuary, where accretion remained stable to intense. The integrated methodology, combining GEE, tidal corrections, and DSAS, offers an innovative approach to monitoring shoreline changes. These findings provide valuable insights for developing sustainable coastal management strategies, particularly in areas facing the dual challenges of climate change and human-induced pressures.

References

Affandi, A. K., & Surbakti, H. (2012). Distribusi sedimen dasar di perairan pesisir Banyuasin, Sumatera Selatan. Maspari Journal, 33–39. Retrieved from https://www.researchgate.net/publication/263138232_Distribusi_Sedimen_Dasar_di_Perairan_Pesisir_Banyuasin_Sumatera_Selatan

Apriansyah, A., Kushadijayanto, A. A., & Risko, R. (2019). Pengaruh Gelombang pada Perubahan Garis Pantai di Perairan Batu Burung Singkawang, Kalimantan Barat. Positron, 9(1), 1–7. https://doi.org/10.26418/positron.v9i1.32632

Aritonang, A. A., Surbakti, H., & Purwiyanto, A. I. S. (2016). Laju Pengendapan Sedimen di Pulau Anakan, Muara Sungai Banyuasin, Provinsi Sumatera Selatan. Maspari Journal, 8(1), 7–14. Retrieved from https://www.researchgate.net/publication/282630014_Laju_Pengendapan_Sedimen_di_Pulau_Anakan_Muara_Sungai_Banyuasin_Sumatera_Selatan

Baig, M. R. I., Ahmad, I. A., Shahfahad, Tayyab, M., & Rahman, A. (2020). Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS). Annals of GIS, 26(4). https://doi.org/10.1080/19475683.2020.1815839

Barus, B. S., Pratama, M. A. P., & Putri, W. A. E. (2020). Perubahan Garis Pantai di Perairan Muara Banyuasin Kaitannya dengan Sedimentasi. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 12(1). https://doi.org/10.29244/jitkt.v12i1.28276

Bidayani, E., & Kurniawan, K. (2020). Conflict Resolution in Coastal Resource Utilization among Fishermen and Unconventional Tin Miners. Society, 8(1), 13–22. https://doi.org/10.33019/society.v8i1.139

Cham, D. D., Son, N. T., Minh, N. Q., Thanh, N. T., & Dung, T. T. (2020). An analysis of shoreline changes using combined multitemporal remote sensing and digital evaluation model. Civil Engineering Journal (Iran), 6(1). https://doi.org/10.28991/cej-2020-03091448

Cui, B. L., & Li, X. Y. (2011). Coastline change of the Yellow River estuary and its response to the sediment and runoff (1976-2005). Geomorphology, 127(1–2). https://doi.org/10.1016/j.geomorph.2010.12.001

Dave, C. P., Joshi, R., & S. Srivastava, S. (2015). A Survey on Geometric Correction of Satellite Imagery. International Journal of Computer Applications, 116(12). https://doi.org/10.5120/20389-2655

Del Río, L., & Gracia, F. J. (2013). Error determination in the photogrammetric assessment of shoreline changes. Natural Hazards, 65(3). https://doi.org/10.1007/s11069-012-0407-y

Dyer, K. R. (1997). Estuaries: a physical introduction. John Wiley & Sons.

Eliot, I., & Clarke, D. (1989). Temporal and spatial bias in the estimation of shoreline rate‐of‐change statistics from beach survey information. Coastal Management, 17(2). https://doi.org/10.1080/08920758909362081

Furukawa, K., & Wolanski, E. (1996). Sedimentation in mangrove forests. Mangroves and Salt Marshes, 1(1). https://doi.org/10.1023/A:1025973426404

Ghufran, M., & Kordi, K. M. (2012). Ekosistem mangrove: potensi, fungsi dan pengelolaan. Rineka Cipta.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202. https://doi.org/10.1016/j.rse.2017.06.031

Handayani, S., Zulkarnaini, Z., & Komala, P. S. (2024). Composition of Environmental Parameters in Aquatic Sediments in West Sumatra. Jurnal Penelitian Pendidikan IPA, 10(8), 6170–6180. https://doi.org/10.29303/jppipa.v10i8.7579

Handayani, Y., Ibrahim, E., & Hendri, M. (2024). Coastline abrasion and sedimentation changes on the Banyuasin coast. Aquaculture, Aquarium, Conservation & Legislation, 17(4), 1339–1350. Retrieved from http://www.bioflux.com.ro/docs/2024.1339-1350.pdf

Handayani, Y., Soesanto, R. H., Fauziyah, F., Ibrahim, E., Hendri, M., & Ngudiantoro, N. (2021). Analysis of Sedimentation as Implications of Beach Accretion using Spatial Analysis in the Coastal Area of Banyuasin South Sumatra, Indonesia. Jurnal Lahan Suboptimal : Journal of Suboptimal Lands, 10(2). https://doi.org/10.36706/jlso.10.2.2021.554

Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G., & Farris, A. S. (2018). Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide. U.S. Geological Survey Open-File Report 2021–1091. https://doi.org/10.3133/ofr20181179

Hoang, V. C., Tanaka, H., Mitobe, Y., & Duy, D. Van. (2016). Tidal Correction Method for Shoreline Position Extarcted from Google Earth Images. Journal of Japan Society of Civil Engineers, Ser. B3 (Ocean Engineering), 72(2). https://doi.org/10.2208/jscejoe.72.i_61

Hu, X., & Wang, Y. (2022). Monitoring coastline variations in the Pearl River Estuary from 1978 to 2018 by integrating Canny edge detection and Otsu methods using long time series Landsat dataset. CATENA, 209, 105840. https://doi.org/10.1016/j.catena.2021.105840

Jelibseda, Kamal, E., Razak, A., & Diliarosta, S. (2025). Analysis of Vegetation Structure and Sustainable Management of Mangrove Forests. Jurnal Penelitian Pendidikan IPA, 10(12), 11239–11248. https://doi.org/10.29303/jppipa.v10i12.9683

Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., & Aarninkhof, S. (2018). The State of the World’s Beaches. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-24630-6

McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., & Silliman, B. R. (2011). A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. In Frontiers in Ecology and the Environment (Vol. 9, Issue 10). https://doi.org/10.1890/110004

McLusky, D. S., & Elliott, M. (2004). The Estuarine Ecosystem: Ecology, Threats, and Management. CEUR Workshop Proceedings. https://doi.org/10.1017/CBO9781107415324.004

Melo, R. H., Alfin, E., & Niode, A. S. (2024). Water Quality River Estuary of Batang Hari, Musi Banyuasin District, the Province of South Sumatera. Jurnal Penelitian Pendidikan IPA, 10(5), 2860–2870. https://doi.org/10.29303/jppipa.v10i5.6223

Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T., Meyssignac, B., Hanson, S. E., Merkens, J. L., & Fang, J. (2021). A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nature Climate Change, 11(4). https://doi.org/10.1038/s41558-021-00993-z

Pardo-Pascual, J. E., Almonacid-Caballer, J., Ruiz, L. A., & Palomar-Vázquez, J. (2012). Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sensing of Environment, 123, 1–11. https://doi.org/10.1016/j.rse.2012.02.024

Rifardi. (2008). Ukuran butir sedimen perairan pantai dumai selat rupat bagian timur sumatera. Jurnal Ilmu Lingkungan, 2(2), 81–88. Retrieved from https://adoc.pub/ukuran-butir-sedimen-perairan-pantai-dumai-selat-rupat-bagia.html

Seto, K. C., Woodcock, C. E., Song, C., Huang, X., Lu, J., & Kaufmann, R. K. (2002). Monitoring land-use change in the Pearl River Delta using Landsat TM. International Journal of Remote Sensing, 23(10). https://doi.org/10.1080/01431160110075532

Suhana, M. P., Nurjaya, I. W., & Natih, N. M. (2017). Analisis Kerentanan Pantai Timur Pulau Bintan, Provinsi Kepulauan Riau Menggunakan Digitas Shoreline Analysis System dan Metode Coastal Vulnerability Index. Jurnal Teknologi Perikanan Dan Kelautan, 7(1). https://doi.org/10.24319/jtpk.7.21-38

Surbakti, H. (2012). Karakteristik Pasang Surut dan Pola Arus di Muara Sungai Musi, Sumatera Selatan. Jurnal Penelitian Sains, 15(1). https://doi.org/10.56064/jps.v15i1.92

Surbakti, H., Purba, M., & Nurjaya, I. W. (2011). Pemodelan Pola Arus di Perairan Pesisir Banyuasin , Sumatera Selatan. Maspari Journal, 03, 9–14. Retrieved from https://www.researchgate.net/publication/263143424_Pemodelan_Pola_Arus_di_Perairan_Pesisir_Banyuasin_Sumatera_Selatan

Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L., & Ergul, A. (2009). DSAS 4.0 Installation Instructions and User Guide. U.S. Geological Survey Open-File Report 2008-1278, 3. Retrieved from https://cmgds.marine.usgs.gov/publications/DSAS/of2008-1278/

Thinh, N. A., & Hens, L. (2017). A Digital Shoreline Analysis System (DSAS) applied on mangrove shoreline changes along the Giao Thuy coastal area (Nam Dinh, Vietnam) during 2005-2014. Vietnam Journal Of Earth Sciences, 39(1). https://doi.org/10.15625/0866-7187/39/1/9231

Tomascik, T., Mah, A. J., Nontji, A., & Moosa, M. K. (1997). The ecology of Indonesian Seas. Environmental Management Development of Indonesia (EMDI) and Dalhousie University.

Turekian, K. K., & Holland, H. D. (2013). Treatise on Geochemistry: Second Edition. In Treatise on Geochemistry: Second Edition (Vol. 1, Issue 15). https://doi.org/10.1016/C2009-1-28473-5

Turner, I. L., Harley, M. D., Almar, R., & Bergsma, E. W. J. (2021). Satellite optical imagery in Coastal Engineering. Coastal Engineering, 167. https://doi.org/10.1016/j.coastaleng.2021.103919

Ulqodry, T. Z., Aprianto, A. E., Agussalim, A., Aryawati, R., & Absori, A. (2021). Analisis Tutupan Mangrove Taman Nasional Berbak–Sembilang melalui Citra Landsat-8 dan Pemantauan LAI. Jurnal Kelautan Tropis, 24(3), 393–401. https://doi.org/10.14710/jkt.v24i3.12278

Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., & Storlazzi, C. D. (2017). Doubling of coastal flooding frequency within decades due to sea-level rise. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-01362-7

Vitousek, S., Buscombe, D., Vos, K., Barnard, P. L., Ritchie, A. C., & Warrick, J. A. (2023). The future of coastal monitoring through satellite remote sensing. Cambridge Prisms: Coastal Futures, 1. https://doi.org/10.1017/cft.2022.4

Vos, K., Splinter, K. D., Harley, M. D., Simmons, J. A., & Turner, I. L. (2019). CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environmental Modelling and Software, 122. https://doi.org/10.1016/j.envsoft.2019.104528

Wolanski, E., & Elliott, M. (2015). Estuarine ecohydrology: an introduction. Elsevier.

Wolanski, E., Mazda, Y., & Ridd, P. (2011). Mangrove hydrodynamics. https://doi.org/10.1029/ce041p0043

Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179

Author Biographies

Heron Surbakti, Universitas Sriwijaya

Raisyah Salsabilah, Universitas Sriwijaya

Riris Aryawati, Universitas Sriwijaya

Isnaini, Universitas Sriwijaya

Robinson Sitepu, Universitas Sriwijaya

License

Copyright (c) 2025 Heron Surbakti, Raisyah Salsabilah, Riris Aryawati, Isnaini, Robinson Sitepu

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:

  1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
  2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
  3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).