Vol. 11 No. 6 (2025): June
Open Access
Peer Reviewed

Genetic Algorithm-Based NRECA Parameter Calibration for Rainfall-Discharge Modeling in Rejoso Watershed

Authors

DOI:

10.29303/jppipa.v11i6.11091

Published:

2025-06-25

Downloads

Abstract

The Rejoso watershed in Pasuruan Regency is a critical water resource that supports various sectors, including agriculture and domestic needs. However, the imbalance between water demand and availability, exacerbated by insufficient discharge measurement infrastructure, necessitates alternative approaches to determine river discharge. This study utilizes the NRECA method combined with Genetic Algorithms (GA) to estimate river discharge by calibrating key hydrological parameters, Percent Sub-Surface (PSUB) and Ground Water Flow (GWF). Data from seven rainfall stations and AWLR Winongan were analyzed for the 2004-2023 period. Calibration of the NRECA model was carried out using the Nash-Sutcliffe Efficiency (NSE) and correlation coefficient (R), both achieving values close to 1, indicating an excellent model fit. The study highlights the applicability of GA for optimizing hydrological parameters and demonstrates the potential of the NRECA-GA method in improving discharge predictions in watersheds with limited data. These findings contribute to more effective and sustainable water resource management in the Rejoso watershed.

Keywords:

Calibration, Discharge, Genetic algorithm (GA), GWF, PSUB, Rainfall

References

Alnino, N. F., Suhartanto, E., & Fidari, J. S. (2022). Analisis Hujan TRMM (Tropical Rainfall Measuring Mission) menjadi Debit dengan Metode NRECA pada Das Bango. Jurnal Teknologi Dan Rekayasa Sumber Daya Air, 2(1), 561–569. https://doi.org/10.21776/ub.jtresda.2022.002.01.45

Amalia, N., Ery Suhartanto, & Linda Prasetyorini. (2023). Usaha Konservasi Terhadap Erosi Berbasis Sistem Informasi Geografis Pada Daerah Aliran Sungai Rejoso Kabupaten Pasuruan. Jurnal Teknologi Dan Rekayasa Sumber Daya Air, 3(2), 757–766. https://doi.org/10.21776/ub.jtresda.2023.003.02.064

Anindya, D. P., Suhartanto, E., & Fidari, J. S. (2022). Perbandingan Metode Alih Ragam Hujan Menjadi Debit dengan FJ. Mock dan NRECA di DAS Welang Kabupaten Pasuruan. Jurnal Teknologi Dan Rekayasa Sumber Daya Air, 2(2), 299. https://doi.org/10.21776/ub.jtresda.2022.002.02.24

Ardana, D., Irwandi, I., Muksin, U., & Idris, M. V. (2025). Rainfall Prediction Using Adaptive Neuro-Fuzzy Inference System Method. Jurnal Penelitian Pendidikan IPA, 11(2), 593–601. https://doi.org/10.29303/jppipa.v11i2.10148

Asdak, C. (2020). Hidrology and Watershed Management. Yogyakarta: Gadjah Mada University Press.

Azadgar, A., Gańcza, A., Asl, S. R., Salata, S., & Nyka, L. (2025). Optimizing nature-based solutions for urban flood risk mitigation: A multi-objective genetic algorithm approach in Gdańsk, Poland. Science of The Total Environment, 963, 178303. https://doi.org/10.1016/j.scitotenv.2024.178303

Cheng, C. T., Ou, C. P., & Chau, K. W. (2002). Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall–runoff model calibration. Journal of Hydrology, 268(1–4), 72–86. https://doi.org/10.1016/S0022-1694(02)00122-1

Fathoni, S., Dermawan, V., & Suhartanto, E. (2016). Analysis of the Effectiveness of Rain Station Post Network Density in Kedungsoko Watershed Using Artificial Neural Network. Jurnal of Water Resources Engineering, 7(1), 129–138. Retrieved from https://jurnalpengairan.ub.ac.id/index.php/jtp/article/view/287

Gashi, G., Isufi, F., Bulliqi, S., & Ramadani, I. (2011). Correlation between discharge, river Basin surface and rainfall quantity in Kosova. Procedia - Social and Behavioral Sciences, 19, 482–486. https://doi.org/10.1016/j.sbspro.2011.05.158

Gejadze, I., Malaterre, P.-O., Oubanas, H., & Shutyaev, V. (2022). A new robust discharge estimation method applied in the context of SWOT satellite data processing. Journal of Hydrology, 610, 127909. https://doi.org/10.1016/j.jhydrol.2022.127909

Hadihardaja, I. K., & Sutikno, S. (2010). Pemodelan Curah Hujan-Limpasan Menggunakan Artificial Neural Network (ANN) dengan Metode Backpropagation. Jurnal Teknik Sipil, 12(4), 250. https://doi.org/10.5614/jts.2005.12.4.3

Hasanah, Y., Herlina, M., & Zaikarina, H. (2013). Flood Prediction using Transfer Function Model of Rainfall and Water Discharge Approach in Katulampa Dam. Procedia Environmental Sciences, 17, 317–326. https://doi.org/10.1016/j.proenv.2013.02.044

Hawari, H., Suhartanto, E., & Lufira, R. D. (2025). Alih Ragam Hujan Menjadi Debit Menggunakan Metode NRECA dengan Algoritma Genetik di DAS Gembong Kabupaten Pasuruan. Jurnal Teknologi Dan Rekayasa Sumber Daya Air, 5(1), 706–714. https://doi.org/10.21776/ub.jtresda.2025.005.01.067

Jayanti, M., Sabar, A., Ariesyady, H. D., Marselina, M., & Qadafi, M. (2023). A comparison of three water discharge forecasting models for monsoon climate region: A case study in cimanuk-jatigede watershed Indonesia. Water Cycle, 4, 17–25. https://doi.org/10.1016/j.watcyc.2023.01.002

Jian, J., Ryu, D., & Wang, Q. J. (2021). A water-level based calibration of rainfall-runoff models constrained by regionalized discharge indices. Journal of Hydrology, 603, 126937. https://doi.org/10.1016/j.jhydrol.2021.126937

Joubier, V., Ebtehaj, I., Amiri, A., Gumiere, S. J., & Bonakdari, H. (2025). Multitemporal river flow discharge prediction: A new framework for integrated environmental management and flood control. Journal of Environmental Management, 383, 125372. https://doi.org/10.1016/j.jenvman.2025.125372

Jukić, D., & Denić-Jukić, V. (2015). Investigating relationships between rainfall and karst-spring discharge by higher-order partial correlation functions. Journal of Hydrology, 530, 24–36. https://doi.org/10.1016/j.jhydrol.2015.09.045

Kumar, V., Unal, S., Bhagat, S. K., & Tiyasha, T. (2024). A data-driven approach to river discharge forecasting in the Himalayan region: Insights from Aglar and Paligaad rivers. Results in Engineering, 22, 102044. https://doi.org/10.1016/j.rineng.2024.102044

Kurniawan, A. R., Bisri, M., & Suhartanto, E. (2019). Analisis Kekeringan Pada Daerah Aliran Sungai (DAS) Bedadung Berbasis Sistem Informasi Geografis (SIG). Jurnal Teknik Pengairan, 10(2), 97–109. https://doi.org/10.21776/ub.pengairan.2019.010.02.03

Masruroh, S., Suhartanto, E., & Harisuseno, D. (2022). Comparison of Rainfall to Discharge Conversion Methods with FJ. Mock and NRECA in Amprong Sub-DAS, Malang Regency. Jurnal Teknologi Dan Rekayasa Sumber Daya Air, 2(2). Retrieved from https://scholar.archive.org/work/37vzulfwinftxjdelwf46w5n5y/access/wayback/https://jtresda.ub.ac.id/index.php/jtresda/article/download/314/285

Nasseri, M., Asghari, K., & Abedini, M. J. (2008). Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network. Expert Systems with Applications, 35(3), 1415–1421. https://doi.org/10.1016/j.eswa.2007.08.033

Ndiritu, J. G., & Daniell, T. M. (2001). An improved genetic algorithm for rainfall-runoff model calibration and function optimization. Mathematical and Computer Modelling, 33(6–7), 695–706. https://doi.org/10.1016/S0895-7177(00)00273-9

Nisa, Z., Suhartanto, E., & Wahyuni, S. (2024). Penerapan Algoritma Genetik dalam Alih Ragam Hujan menjadi Debit Menggunakan Metode FJ. Mock di DAS Rejoso. Jurnal Teknologi Dan Rekayasa Sumber Daya Air, 4(02), 1508–1517. https://doi.org/10.21776/ub.jtresda.2024.004.02.150

Nour, A. M., Vallet‐Coulomb, C., Gonçalves, J., Sylvestre, F., & Deschamps, P. (2021). Rainfall-discharge relationship and water balance over the past 60 years within the Chari-Logone sub-basins, Lake Chad basin. Journal of Hydrology: Regional Studies, 35, 100824. https://doi.org/10.1016/j.ejrh.2021.100824

Nurviana, S. C. K., Suhartanto, E., & Harisuseno, D. (2023). Perbandingan Metode Alih Ragam Hujan Menjadi Debit dengan FJ. Mock dan NRECA di DAS Gandong Kabupaten Magetan. Jurnal Teknologi Dan Rekayasa Sumber Daya Air, 3(1), 22–34. https://doi.org/10.21776/ub.jtresda.2023.003.01.03

Putri, A. S., Suhartanto, E., & Fidari, J. S. (2023). Perbandingan Metode Alih Ragam Hujan Menjadi Debit dengan FJ. Mock dan NRECA di DAS Rejoso Kabupaten Pasuruan. Jurnal Teknologi Dan Rekayasa Sumber Daya Air, 3(2), 78–92. https://doi.org/10.21776/ub.jtresda.2023.003.002.07

Sugiyono. (2019). Combination Research Methods (Mixed Methods). Bandung: Alphabeta.

Supiyati, Elisa, I., & Halauddin. (2024). The Affect of Physical Parameters on Flood Potential in the Upstream River and the Musi Watershed of Kepahiang, Indonesia. Jurnal Penelitian Pendidikan IPA, 10(10), 7936–7945. https://doi.org/10.29303/jppipa.v10i10.7442

Syaakiroh, S., Ery Suhartanto, & Sri Wahyuni. (2024). Aplikasi Metode FJ. Mock untuk Alih Ragam Hujan Menjadi Debit Menggunakan Algoritma Genetik di DAS Welang Kabupaten Pasuruan. Jurnal Teknologi Dan Rekayasa Sumber Daya Air, 4(02), 1567–1577. https://doi.org/10.21776/ub.jtresda.2024.004.02.155

Widyaningsih, K. waasiu, Harisuseno, D., & Soetopo, W. (2021). Perbandingan Metode FJ. Mock dan NRECA untuk Transformasi Hujan Menjadi Debit pada DAS Metro Kabupaten Malang, Jawa Timur. Jurnal Teknologi Dan Rekayasa Sumber Daya Air, 1(1), 52–61. https://doi.org/10.21776/ub.jtresda.2021.001.01.05

Wu, J., Long, J., & Liu, M. (2015). Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm. Neurocomputing, 148, 136–142. https://doi.org/10.1016/j.neucom.2012.10.043

Author Biographies

Angelina Satya Putri, University of Brawijaya

Ery Suhartanto, University of Brawijaya

Ussy Andawayanti, University of Brawijaya

Downloads

Download data is not yet available.

How to Cite

Putri, A. S., Suhartanto, E., & Andawayanti, U. (2025). Genetic Algorithm-Based NRECA Parameter Calibration for Rainfall-Discharge Modeling in Rejoso Watershed. Jurnal Penelitian Pendidikan IPA, 11(6), 734–742. https://doi.org/10.29303/jppipa.v11i6.11091