Vol. 11 No. 6 (2025): June
Open Access
Peer Reviewed

Appplication of Biochar and Rice Husk Ash to sulfur Absorption, Growth and Production of Shallots Plant (Allium ascalonicum L.)

Authors

Sri Pratiwi Aritonang , Ebsan Marihot Sianipar , Efbertias Sitorus , Pahala LL Sianturi

DOI:

10.29303/jppipa.v11i6.11115

Published:

2025-06-25

Downloads

Abstract

Soil fertility decline and sulfur deficiency are major constraints in shallot (Allium ascalonicum L.) cultivation, especially in sandy soils with low cation exchange capacity. Biochar and rice husk ash are potential soil amendments known to improve soil structure, nutrient availability, and crop productivity. This study aimed to determine the effect of rice husk biochar and rice husk ash on the growth, yield, and sulfur uptake of shallots. A factorial experiment was conducted using a Randomized Group Design (RGD) with two factors: biochar and rice husk ash, each at three dose levels. Results showed that biochar application improved the number of leaves, number of tillers, and bulb weight per unit, while rice husk ash had a limited effect, mainly enhancing leaf number at early growth. No significant interaction between the two amendments was observed across measured parameters, including sulfur uptake. These findings suggest that biochar contributes more effectively to shallot growth and yield than rice husk ash under the tested conditions. Further studies are recommended to optimize the combined use of organic amendments and to explore their long-term effects on soil nutrient dynamics and crop performance.

Keywords:

Biochar Growth Rice husk ash Shallot Sulfur uptake Yield

References

Al Naggar, Y., Khalil, M. S., & Ghorab, M. A. (2018). Environmental Pollution by Heavy Metals in the Aquatic Ecosystems of Egypt. Open Acc. J. Toxicol, 3(1), 555603. https://doi.org/10.19080/OAJT.2018.03.555603

Alam, M. S., Bishop, B., Chen, N., Safari, S., Warter, V., Byrne, J. M., Warchola, T., Kappler, A., Konhauser, K. O., & Alessi, D. S. (2020). Reusable Magnetite Nanoparticles–Biochar Composites for the Efficient Removal of Chromate from Water. Scientific Reports, 10(1), 19007. https://doi.org/10.1038/s41598-020-75924-7

Amoah-Antwi, C., Kwiatkowska-Malina, J., Thornton, S. F., Fenton, O., Malina, G., & Szara, E. (2020). Restoration of Soil Quality Using Biochar and Brown Coal Waste: A Review. Science of the Total Environment, 722, 137852. https://doi.org/10.1016/j.scitotenv.2020.137852

Armynah, B., Atika, A., Djafar, Z., Piarah, W. H., & Tahir, D. (2018). Analysis of Chemical and Physical Properties of Biochar from Rice Husk Biomass. Journal of Physics: Conference Series, 979, 12038. https://doi.org/10.1088/1742-6596/979/1/012038

Asadi, H., Ghorbani, M., Rezaei-Rashti, M., Abrishamkesh, S., Amirahmadi, E., Chengrong, C., & Gorji, M. (2021). Application of Rice Husk Biochar for Achieving Sustainable Agriculture and Environment. Rice Science, 28(4), 325–343. https://doi.org/10.1016/j.rsci.2021.05.004

Beckers, F., Mothes, S., Abrigata, J., Zhao, J., Gao, Y., & Rinklebe, J. (2019). Mobilization of Mercury Species Under Dynamic Laboratory Redox Conditions in a Contaminated Floodplain Soil as Affected by Biochar and Sugar Beet Factory Lime. Science of the Total Environment, 672, 604–617. https://doi.org/10.1016/j.scitotenv.2019.03.401

Chang, Y. Y., Razak, M. F. A., & Sim, C. C. (2023). Effects of Different Growing Media Under Soilless Culture on the Growth and Nutrient Uptake of Oil Palm Seedlings in the Pre-Nursery Stage. Science & Technology Asia, 256–263. https://doi.org/10.14456/scitechasia.2023.85

Clough, T. J., Condron, L. M., Kammann, C., & Müller, C. (2013). A Review of Biochar and Soil Nitrogen Dynamics. Agronomy, 3(2), 275–293. https://doi.org/10.3390/agronomy3020275

Ding, X., Li, G., Zhao, X., Lin, Q., & Wang, X. (2023). Biochar Application Significantly Increases Soil Organic Carbon Under Conservation Tillage: An 11-Year Field Experiment. Biochar, 5(1), 28. https://doi.org/10.1007/s42773-023-00226-w

Gamage, D. N. V., Mapa, R. B., Dharmakeerthi, R. S., & Biswas, A. (2016). Effect of Rice-Husk Biochar on Selected Soil Properties in Tropical Alfisols. Soil Research, 54(3), 302–310. https://doi.org/10.1071/SR15102

Gonzaga, M. I. S., Santos, J. C. D. J., Almeida, A. Q. D., Ros, K. D., & Santos, W. M. (2022). Nitrogen and Phosphorus Availability in the Rhizosphere of Maize Plants Cultivated in Biochar Amended Soil. Archives of Agronomy and Soil Science, 68(8), 1062–1074. https://doi.org/10.1080/03650340.2020.1869215

Hemowng, S., Sangrit, C., Phunthupan, P., Butnan, S., & Vityakon, P. (2021). Rice-Derived Biochars Enhance the Yield of Spring Onion (Allium cepa l. var. aggregatum), While Reducing Pesticide Contamination in Soil and Plant. Applied Ecology and Environmental Research, 19(1), 349–358. https://doi.org/10.15666/aeer/1901_349358

Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., Kirkham, M. B., Chowdhury, S., & Bolan, N. (2020). Biochar and Its Importance on Nutrient Dynamics in Soil and Plant. Biochar, 2, 379–420. https://doi.org/10.1007/s42773-020-00065-z.

Indonesia, B. (2023). Statistik Indonesia, Statistical Year Book of Indonesia. Statistik Indonesia 2020, 1101001, 790.

Iswidayani, O., & Sulhaswardi, S. (2022). Aplikasi Biochar Sekam Padi dan Pupuk KCl Terhadap Pertumbuhan Serta Produksi Bawang Merah (Allium ascalonicum L.) di Tanah Gambut. Jurnal Agroteknologi Agribisnis dan Akuakultur, 2(2), 107–119. https://doi.org/10.25299/jaaa.2022.11195

Jaiswal, A. K., Alkan, N., Elad, Y., Sela, N., Graber, E. R., & Frenkel, O. (2020). Molecular Insights into Biochar-Mediated Plant Growth Promotion and Systemic Resistance in Tomato Against Fusarium Crown and Root Rot Disease. Scientific Reports, 10(1), 13934. https://doi.org/10.1038/s41598-020-70882-6

Jali, S., Alby, S., & Andrianto, A. E. (2022). Pengaruh Pemberian Beberapa Dosis Biochar Sekam Padi dan Pupuk Kandang Kotoran Ayam Terhadap Hasil Bawang Merah (Allium ascalonicum L.). AGRONITAS, 4(2), 268–275. https://doi.org/10.51517/ags.v4i2.154

Juwanda, M., Sakhidin, S., & Kharisun, K. (2023). Respon Tanaman Bawang Merah (Allium ascalonicum, L) pada Pemberian Sulfur dan Kompos Terhadap Hasil, Kadar Alliin Umbi dan Efisiensi Pemupukan Sulfur. Biofarm: Jurnal Ilmiah Pertanian, 19(1), 186–191. https://doi.org/10.31941/biofarm.v19i1.3253

Karam, D. S., Ibrahim, Z., Rani, R., Wahid, A. R. A., Kadir, Z. A., Salleh, M. S. A., Abdul-Hamid, H., Rajoo, K. S., Ibrahim, M. H. M., & Azhar, M. A. A. (2022). A Narrative Review of the Impact of Forest Rehabilitation Programs on Soil Quality in Peninsular Malaysia. Malaysian Journal of Soil Science, 26, 1–16. Retrieved from https://www.researchgate.net/publication/364955425

Karimi, A., Moezzi, A., Chorom, M., & Enayatizamir, N. (2020). Application of Biochar Changed the Status of Nutrients and Biological Activity in a Calcareous Soil. Journal of Soil Science and Plant Nutrition, 20, 450–459. https://doi.org/10.1007/s42729-019-00129-5

Li, T., Hong, X., Liu, S., Wu, X., Fu, S., Liang, Y., Li, J., Li, R., Zhang, C., & Song, X. (2022). Cropland Degradation and Nutrient Overload on Hainan Island: A Review and Synthesis. Environmental Pollution, 313, 120100. https://doi.org/10.1016/j.envpol.2022.120100

Macdonald, L. M., Farrell, M., Zwieten, L. V., & Krull, E. S. (2014). Plant Growth Responses to Biochar Addition: An Australian Soils Perspective. Biology and Fertility of Soils, 50(7), 1035–1045. https://doi.org/10.1007/s00374-014-0921-z

Manik, S. E. (2020). Pengaruh Pemberian Pupuk Abu Sekam Padi dan Kalium (KCL) Terhadap Pertumbuhan dan Produksi Tanaman Bawang Merah (Allium ascolanicum L.). AGRILAND Jurnal Ilmu Pertanian, 8(2), 251–260. https://doi.org/10.30743/agr.v8i2.3095

Mapegau, M., Setyaji, H., Hayati, I., & Ayuningtiyas, S. P. (2022). Efek Residu Biochar Sekam Padi dan Pupuk Kandang Ayam Terhadap Pertumbuhan dan Hasil Tanaman Jagung (Zea mays L.). Biospecies, 15(1), 49–55. https://doi.org/10.22437/biospecies.v15i1.17121

Masresha, B., Braka, F., Onwu, N. U., Oteri, J., Erbeto, T., Oladele, S., Sumaili, K., Aman-Oloniyo, A., Katsande, R., & Tegegn, S. G. (2018). Progress Towards Measles Elimination in Nigeria: 2012–2016. Journal of Immunological Sciences, 135. Retrieved from https://pubmed.ncbi.nlm.nih.gov/30957102/

Mia, S., Dijkstra, F. A., & Singh, B. (2017). Long-Term Aging of Biochar: A Molecular Understanding with Agricultural and Environmental Implications. Advances in Agronomy, 141, 1–51. https://doi.org/10.1016/bs.agron.2016.10.001

Molnar, M. Z., Gosmanova, E. O., Sumida, K., Potukuchi, P. K., Lu, J. L., Jing, J., Ravel, V. A., Soohoo, M., Rhee, C. M., & Streja, E. (2016). Predialysis Cardiovascular Disease Medication Adherence and Mortality After Transition to Dialysis. American Journal of Kidney Diseases, 68(4), 609–618. https://doi.org/10.1053/j.ajkd.2016.02.051

Munera-Echeverri, J. L., Martinsen, V., Strand, L. T., Zivanovic, V., Cornelissen, G., & Mulder, J. (2018). Cation Exchange Capacity of Biochar: An Urgent Method Modification. Science of the Total Environment, 642, 190–197. https://doi.org/10.1016/j.scitotenv.2018.06.017

Nepal, J., Ahmad, W., Munsif, F., Khan, A., & Zou, Z. (2023). Advances and Prospects of Biochar in Improving Soil Fertility, Biochemical Quality, and Environmental Applications. Frontiers in Environmental Science, 11, 1114752. https://doi.org/10.3389/fenvs.2023.1114752

Prasad, M., Chrysargyris, A., McDaniel, N., Kavanagh, A., Gruda, N. S., & Tzortzakis, N. (2019). Plant Nutrient Availability and pH of Biochars and Their Fractions, with the Possible Use as a Component in a Growing Media. Agronomy, 10(1), 10. https://doi.org/10.3390/agronomy10010010

Razzaghi, F., Arthur, E., & Moosavi, A. A. (2021). Evaluating Models to Estimate Cation Exchange Capacity of Calcareous Soils. Geoderma, 400, 115221. https://doi.org/10.1016/j.geoderma.2021.115221

Saragih, M. K., Panataria, L. R., & Nainggolan, M. (2021). Respon Pertumbuhan dan Produksi Bawang Merah (Allium ascalinicum L.) Terhadap Pemberian Biochar dan Pupuk Kandang Ayam di Tanah Ultisol Secara Vertikultur. Jurnal METHODAGRO, 7(2), 41–46. https://doi.org/10.46880/mtg.v7i2.875

Singh, H., Northup, B. K., Rice, C. W., & Prasad, P. V. V. (2022). Biochar Applications Influence Soil Physical and Chemical Properties, Microbial Diversity, and Crop Productivity: A Meta-Analysis. Biochar, 4(1), 8. https://doi.org/10.1007/s42773-022-00138-1

Siregar, D. A., Lahay, R. R., & Rahmawati, N. (2017). Respons Pertumbuhan dan Produksi Kedelai (Glycine max (L. Merril) Terhadap Pemberian Biochar Sekam Padi dan Pupuk P. Jurnal Agroteknologi, 5(3), 722–728. https://doi.org/10.32734/ja.v5i3.2243

Volf, M. R., Batista-Silva, W., Silvério, A. D., Santos, L. G. D., & Tiritan, C. S. (2022). Effect of Potassium Fertilization in Sandy Soil on the Content of Essential Nutrients in Soybean Leaves. Annals of Agricultural Sciences, 67(1), 99–106. https://doi.org/10.1016/j.aoas.2022.06.001

Yadav, S. P. S., Bhandari, S., Bhatta, D., Poudel, A., Bhattarai, S., Yadav, P., Ghimire, N., Paudel, P., Paudel, P., Shrestha, J., & Oli, B. (2023). Biochar Application: A Sustainable Approach to Improve Soil Health. Journal of Agriculture and Food Research, 11, 100498. https://doi.org/10.1016/j.jafr.2023.100498

Zhao, M., Dai, Y., Zhang, M., Feng, C., Qin, B., Zhang, W., Zhao, N., Li, Y., Ni, Z., & Xu, Z. (2020). Mechanisms of Pb and/or Zn Adsorption by Different Biochars: Biochar Characteristics, Stability, and Binding Energies. Science of the Total Environment, 717, 136894. https://doi.org/10.1016/j.scitotenv.2020.136894

Author Biographies

Sri Pratiwi Aritonang, Universitas Methodist Indonesia

Author Origin : Indonesia

Ebsan Marihot Sianipar, Universitas Methodist Indonesia

Author Origin : Indonesia

Efbertias Sitorus, Universitas Methodist Indonesia

Author Origin : Indonesia

Pahala LL Sianturi, Universitas Methodist Indonesia

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Aritonang, S. P., Sianipar, E. M., Sitorus, E., & Sianturi, P. L. (2025). Appplication of Biochar and Rice Husk Ash to sulfur Absorption, Growth and Production of Shallots Plant (Allium ascalonicum L.). Jurnal Penelitian Pendidikan IPA, 11(6), 809–818. https://doi.org/10.29303/jppipa.v11i6.11115