Vol. 11 No. 5 (2025): May
Open Access
Peer Reviewed

Petrophysical Analysis and Evaluation of Overpressure Zone as Hydrocarbon Trap in North East Java Basin

Authors

Michael Anggi , A. Haris , Rinaldo

DOI:

10.29303/jppipa.v11i5.11199

Published:

2025-05-25

Downloads

Abstract

Errors in estimating pore pressure can cause blowouts during the drilling process, especially in overpressured zones. This study focuses on pore pressure estimation in the North East Java Basin using the approach, which is validated with field data. The well log data analyzed include resistivity, density, sonic velocity, and porosity, which are used to detect the presence of overpressure zones and identify reservoir potential. The results show that the overpressure zone begins at a depth of 4600 feet and lasts up to 9000 feet. The interval between 4800 to 7300 feet is identified as a potential reservoir, while seal rocks are found at 4000–4600 feet. The cross plot between sonic and density parameters shows the dominance of smectite minerals, indicating that perfect compaction has not occurred due to trapped fluids. This finding strengthens the suspicion that the overpressure formation mechanism is dominated by sediment loading. Precise pore pressure estimation is needed to reduce operational risks and optimize hydrocarbon exploration in this area.

Keywords:

Hydrocarbon, Overpressure, Pore pressure, Reservoir, Smectite

References

Abbey, C. P., Meludu, O. C., & Oniku, A. S. (2021). 3D modeling of abnormal pore pressure in shallow offshore Niger delta: An application of seismic inversion. Petroleum Research, 6(2), 158–171. https://doi.org/10.1016/j.ptlrs.2020.12.001

Abd El-Hay, M., Radwan, A. A., Mahfouz, K. H., & Leila, M. (2024). Integrated seismic-stratigraphic, sedimentological and petrophysical approaches for characterizing the reservoir potential of early Cretaceous Alam El Bueib formation in the Meleiha concession of North Western Desert, Egypt. Marine and Petroleum Geology, 160, 106659. https://doi.org/10.1016/j.marpetgeo.2023.106659

Adeniran, M. A., Oladunjoye, M. A., & Doro, K. O. (2024). Assessing the Use of Electrical Resistivity for Monitoring Crude Oil Contaminant Distribution in Unsaturated Coastal Sands Under Varying Salinity. Geosciences, 14(11), 308. https://doi.org/10.3390/geosciences14110308

Alghamdi, A. H., Alonaizi, F. A., & Almalki, M. A. (2024). Investigating the Structural Framework Beneath Riyadh Region for Potential Geothermal Exploration Utilizing Geological and Geophysical Data. Sustainability, 16(24), 11286. https://doi.org/10.3390/su162411286

Amjad, M. R., Zafar, M., Ahmad, T., Hussain, M., & Shakir, U. (2022). Overpressures Induced by Compaction Disequilibrium Within Structural Compartments of Murree Formation, Eastern Potwar, Pakistan. Frontiers in Earth Science, 10, 903405. https://doi.org/10.3389/feart.2022.903405

Amjad, M. R., Zafar, M., Malik, M. B., & Naseer, Z. (2023). Precise geopressure predictions in active foreland basins: An application of deep feedforward neural networks. Journal of Asian Earth Sciences, 245, 105560. https://doi.org/10.1016/j.jseaes.2023.105560

Asfha, D. T., Gebretsadik, H. T., Latiff, A. H. A., & Rahmani, O. (2024). Predictive pore pressure modeling using well-log data in the West Baram Delta, offshore Sarawak Basin, Malaysia. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 10(1), 196. https://doi.org/10.1007/s40948-024-00903-5

Ashena, R., Elmgerbi, A., Rasouli, V., Ghalambor, A., Rabiei, M., & Bahrami, A. (2020). Severe wellbore instability in a complex lithology formation necessitating casing while drilling and continuous circulation system. Journal of Petroleum Exploration and Production Technology, 10(4), 1511–1532. https://doi.org/10.1007/s13202-020-00834-3

Bahmaei, Z., & Hosseini, E. (2020). Pore pressure prediction using seismic velocity modeling: Case study, Sefid-Zakhor gas field in Southern Iran. Journal of Petroleum Exploration and Production Technology, 10(3), 1051–1062. https://doi.org/10.1007/s13202-019-00818-y

Bowers, G. L. (2002). Detecting high overpressure. The Leading Edge, 21(2), 174–177. https://doi.org/10.1190/1.1452608

Chen, X., Cao, W., Gan, C., & Wu, M. (2022). A hybrid partial least squares regression-based real time pore pressure estimation method for complex geological drilling process. Journal of Petroleum Science and Engineering, 210, 109771. https://doi.org/10.1016/j.petrol.2021.109771

Chen, X.-Y., Weng, C.-K., Tao, L., Yang, J., Gao, D.-L., & Li, J. (2025). A novel method for predicting formation pore pressure ahead of the drill bit by embedding petrophysical theory into machine learning based on seismic and logging-while-drilling data. Petroleum Science, S1995822625001396. https://doi.org/10.1016/j.petsci.2025.04.012

Darwesh, A. K., Rasmussen, T. M., & Al-Ansari, N. (2017). Time Optimizing near the Pay Zone. Engineering, 09(10), 848–859. https://doi.org/10.4236/eng.2017.910050

Doyle, E. E. H., Johnston, D. M., Smith, R., & Paton, D. (2019). Communicating model uncertainty for natural hazards: A qualitative systematic thematic review. International Journal of Disaster Risk Reduction, 33, 449–476. https://doi.org/10.1016/j.ijdrr.2018.10.023

Du, S., Huang, C., Ma, X., & Fan, H. (2024). A Review of Data-Driven Intelligent Monitoring for Geological Drilling Processes. Processes, 12(11), 2478. https://doi.org/10.3390/pr12112478

Dubinya, N., Bayuk, I., Hortov, A., Myatchin, K., Pirogova, A., & Shchuplov, P. (2022). Prediction of Overpressure Zones in Marine Sediments Using Rock-Physics and Other Approaches. Journal of Marine Science and Engineering, 10(8), 1127. https://doi.org/10.3390/jmse10081127

Eaton, B. A. (1975). The Equation for Geopressure Prediction from Well Logs. Fall Meeting of the Society of Petroleum Engineers of AIME, SPE-5544-MS. https://doi.org/10.2118/5544-MS

Feng, J., Wang, Q., Li, M., Li, X., Zhou, K., Tian, X., Niu, J., Yang, Z., Zhang, Q., & Sun, M. (2024). Pore Pressure Prediction for High-Pressure Tight Sandstone in the Huizhou Sag, Pearl River Mouth Basin, China: A Machine Learning-Based Approach. Journal of Marine Science and Engineering, 12(5), 703. https://doi.org/10.3390/jmse12050703

Hosseinzadeh, S., Haghighi, M., Salmachi, A., & Shokrollahi, A. (2024). Carbon dioxide storage within coal reservoirs: A comprehensive review. Geoenergy Science and Engineering, 241, 213198. https://doi.org/10.1016/j.geoen.2024.213198

Hussain, W., Ali, N., Sadaf, R., Hu, C., Nykilla, E. E., Ullah, A., Iqbal, S. M., Hussain, A., & Hussain, S. (2022). Petrophysical analysis and hydrocarbon potential of the lower Cretaceous Yageliemu Formation in Yakela gas condensate field, Kuqa Depression of Tarim Basin, China. Geosystems and Geoenvironment, 1(4), 100106. https://doi.org/10.1016/j.geogeo.2022.100106

Huszar, T., Wittenberger, G., & Skvarekova, E. (2022). Warning Signs of High-Pressure Formations of Abnormal Contour Pressures When Drilling for Oil and Natural Gas. Processes, 10(6), 1106. https://doi.org/10.3390/pr10061106

Jafarizadeh, F., Rajabi, M., Tabasi, S., Seyedkamali, R., Davoodi, S., Ghorbani, H., Alvar, M. A., Radwan, A. E., & Csaba, M. (2022). Data driven models to predict pore pressure using drilling and petrophysical data. Energy Reports, 8, 6551–6562. https://doi.org/10.1016/j.egyr.2022.04.073

Jahanbakhsh, A., Wlodarczyk, K. L., Hand, D. P., Maier, R. R. J., & Maroto-Valer, M. M. (2020). Review of Microfluidic Devices and Imaging Techniques for Fluid Flow Study in Porous Geomaterials. Sensors, 20(14), 4030. https://doi.org/10.3390/s20144030

Krishna, S., Irfan, S. A., Keshavarz, S., Thonhauser, G., & Ilyas, S. U. (2024). Smart predictions of petrophysical formation pore pressure via robust data-driven intelligent models. Multiscale and Multidisciplinary Modeling, Experiments and Design, 7(6), 5611–5630. https://doi.org/10.1007/s41939-024-00542-z

Li, C., Zhan, L., & Lu, H. (2022). Mechanisms for Overpressure Development in Marine Sediments. Journal of Marine Science and Engineering, 10(4), 490. https://doi.org/10.3390/jmse10040490

Li, H., Tan, Q., Deng, J., Dong, B., Li, B., Guo, J., Zhang, S., & Bai, W. (2023). A Comprehensive Prediction Method for Pore Pressure in Abnormally High-Pressure Blocks Based on Machine Learning. Processes, 11(9), 2603. https://doi.org/10.3390/pr11092603

Mahmoud, A. A., Alzayer, B. M., Panagopoulos, G., Kiomourtzi, P., Kirmizakis, P., Elkatatny, S., & Soupios, P. (2024). A New Empirical Correlation for Pore Pressure Prediction Based on Artificial Neural Networks Applied to a Real Case Study. Processes, 12(4), 664. https://doi.org/10.3390/pr12040664

Matinkia, M., Amraeiniya, A., Behboud, M. M., Mehrad, M., Bajolvand, M., Gandomgoun, M. H., & Gandomgoun, M. (2022). A novel approach to pore pressure modeling based on conventional well logs using convolutional neural network. Journal of Petroleum Science and Engineering, 211, 110156. https://doi.org/10.1016/j.petrol.2022.110156

Nagy, Z., Baracza, M. K., & Szabó, N. P. (2021). Magnitude Estimation of Overpressure Generation Mechanisms Using Quantitative Stochastic 2D Basin Models: A Case Study from the Danube-Tisza Interfluve Area in Hungary. Applied Sciences, 11(6), 2841. https://doi.org/10.3390/app11062841

Oloruntobi, O., & Butt, S. (2019). Energy-based formation pressure prediction. Journal of Petroleum Science and Engineering, 173, 955–964. https://doi.org/10.1016/j.petrol.2018.10.060

Pan, R., Cui, B., Zhang, X., Wang, Y., & Zheng, L. (2023). Study on pressure wave response and overpressure attenuation law of explosion-proof doors. Process Safety and Environmental Protection, 169, 706–717. https://doi.org/10.1016/j.psep.2022.11.032

Qin, X., Han, D.-H., & Zhao, L. (2019). Elastic characteristics of overpressure due to smectite-to-illite transition based on micromechanism analysis. GEOPHYSICS, 84(4), WA23–WA42. https://doi.org/10.1190/geo2018-0338.1

Senger, K., Birchall, T., Betlem, P., Ogata, K., Ohm, S., Olaussen, S., & Paulsen, R. S. (2021). Resistivity of reservoir sandstones and organic rich shales on the Barents Shelf: Implications for interpreting CSEM data. Geoscience Frontiers, 12(6), 101063. https://doi.org/10.1016/j.gsf.2020.08.007

Suryana, E., Hutasoit, L. M., Ramdhan, A. M., Nugroho, D., & Arifin, A. (2023). Pore Pressure and Compartmentalization of Carbonate Reservoirs in Northern Madura Platform—East Java Basin, Indonesia. Indonesian Journal on Geoscience, 10(3), 297–307. https://doi.org/10.17014/ijog.10.3.297-307

Tan, Q., Hao, X., Luo, C., Zhang, J., & Weng, H. (2020). Application of Bowers Model in Abnormal Pore Pressure Prediction in Deepwater Drilling. IOP Conference Series: Earth and Environmental Science, 513(1), 012062. https://doi.org/10.1088/1755-1315/513/1/012062

Wang, H., Ma, J., & Li, L. (2024). Pore pressure prediction based on rock physics theory and its application in seismic inversion. Journal of Applied Geophysics, 229, 105494. https://doi.org/10.1016/j.jappgeo.2024.105494

Wittenberger, G., Huszar, T., Skvarekova, E., Cambal, J., & Bugnova, M. (2023). Dependency of Pressure Expression towards Formation Pressures during Drilling Operations in Hydrocarbon Wells and Suitable Choice of Pressure Control Method. Processes, 11(11), 3054. https://doi.org/10.3390/pr11113054

Xiu, Z., Liu, Q., Liu, Z., Li, M., Li, P., & Hao, B. (2025). Coupled behavior of overpressure and vented flame in large-scale constrained spaces during methane deflagration: Effect of ignition position. Process Safety and Environmental Protection, 198, 107111. https://doi.org/10.1016/j.psep.2025.107111

Xu, Y.-Q., Liu, K., He, B.-L., Pinyaeva, T., Li, B.-S., Wang, Y.-C., Nie, J.-J., Yang, L., & Li, F.-X. (2023). Risk pre-assessment method for regional drilling engineering based on deep learning and multi-source data. Petroleum Science, 20(6), 3654–3672. https://doi.org/10.1016/j.petsci.2023.06.005

Zheng, X., & Bourg, I. C. (2023). Nanoscale Prediction of the Thermal, Mechanical, and Transport Properties of Hydrated Clay on 106—And 1015 -Fold Larger Length and Time Scales. ACS Nano, 17(19), 19211–19223. https://doi.org/10.1021/acsnano.3c05751

Author Biographies

Michael Anggi, Universitas Indonesia

A. Haris, Universitas Indonesia

Rinaldo, Universitas Indonesia

Downloads

Download data is not yet available.

How to Cite

Anggi, M., Haris, A., & Rinaldo. (2025). Petrophysical Analysis and Evaluation of Overpressure Zone as Hydrocarbon Trap in North East Java Basin. Jurnal Penelitian Pendidikan IPA, 11(5), 945–949. https://doi.org/10.29303/jppipa.v11i5.11199