Vol. 11 No. 7 (2025): July
Open Access
Peer Reviewed

The Effect of Seaweed Soy Tempe Extract on the Reduction of Blood Sugar Levels in Alloxan Induced Rats (Mus musculus)

Authors

Abdul Hakim Laenggeng , Asriani Hasanuddin , Sitti Nuryanti , Manap Trianto

DOI:

10.29303/jppipa.v11i7.11307

Published:

2025-07-25

Downloads

Abstract

Diabetes mellitus is a metabolic disorder characterized by chronic hyperglycemia due to impaired insulin secretion or action. This study aimed to examine the antihyperglycemic effect of seaweed soybean tempeh extract in alloxan-induced diabetic mice. A Completely Randomized Design (CRD) was used with 20 healthy male mice (2–3 months old, 25–30 g), divided into five groups: negative control, positive control (metformin), and three treatment groups receiving extract doses of 25, 75, and 125 mg/kg BW. Prior to treatment, mice underwent acclimatization to ensure uniform baseline conditions. Blood glucose levels were measured to assess the effects of the extract. Data were analyzed using ANOVA followed by the Least Significant Difference (LSD) test. The results showed that alloxan effectively induced hyperglycemia by damaging pancreatic beta cells. Administration of seaweed soybean tempeh extract significantly reduced blood glucose levels (p < 0.05). The highest dose (125 mg/kg BW) produced the most notable effect, comparable to metformin, while the 75 mg/kg BW dose also demonstrated significant efficacy. Both were significantly more effective than the lowest dose. In conclusion, seaweed soybean tempeh extract has potential as an alternative antihyperglycemic agent, especially at higher doses.

Keywords:

Alloxan Diabetes Mellitus Seaweed Soy Tempe

References

Abdulgani, N., Trisnawati, I., Hidayati, D., & Aisyatussoffi, N. (2014). Snakehead (Channa striata) extracts treatment towards hyperglycemic mice (Mus musculus) blood glucose levels and pancreatic histology structure. Journal of Applied Environmental and Biological Sciences, 4(5), 1–6.

Akter, F., Rahman, M. M., Mostofa, M., & Chowdhury, E. H. (2014). Anti-diabetic effect of neem and spirulina in alloxan-induced diabetic mice. International Journal of Current Research and Academic Review, 2(4), 124–134.

Bocanegra, A., Macho-González, A., Garcimartín, A., Benedí, J., & Sánchez-Muniz, F. J. (2021). Whole alga, algal extracts, and compounds as ingredients of functional foods: Composition and action mechanism relationships in the prevention and treatment of type-2 diabetes mellitus. International Journal of Molecular Sciences, 22(8), 3816. DOI: 10.3390/ijms22083816.

Cimbiz, A., Ozay, Y., Yurekdeler, N., Caycı, K., Colak, T., Aksoy, C. C., & Uysal, H. (2011). The effect of long-term exercise training on the blood glucose level and weight in alloxan administered mice. Scientific Research and Essays, 6(1), 66–70.

Faisal, M., Juswono, U. P., Santoso, D. R., & Widodo, C. S. (2025). Correlation of electrical impedance values to blood sugar levels of mice (Mus musculus) with diabetes mellitus. Journal of Physics: Conference Series, 2945(1), 012003. IOP Publishing. DOI: 0.1088/1742-6596/2945/1/012003

Haryanto, H., Sutandi, A., Kusumawati, E., Nurhayati, S., Fitri, F. M., Nafsi, G., & Nuraeni, S. W. (2023). Potential of therapeutic Curculigo latifolia extracts on alloxan-induced diabetes in male Mus musculus. Biosaintifika: Journal of Biology & Biology Education, 15(3), 370–377. DOI: 10.15294/biosaintifika.v15i3.40498.

Herlina, H., Amriani, A., Solihah, I., & Sintya, R. (2018). Antidiabetic activity test of ethanolic Seri leaves (Muntingia calabura L.) extract in male rats induced by alloxan. Science and Technology Indonesia, 3(1), 7–13. DOI: 10.26554/sti.2018.3.1.7-13.

Hongayo, M. C. (2011). The effect of brown alga Cystoseira moniliformis (Kützing) Hauck extract on the blood glucose level of alloxan-induced hyperglycemic albino mice (Mus musculus Linnaeus, 1758). Journal of Pharmaceutical and Clinical Sciences, 3, 1–12. DOI: 1 0.7718/iamure.ijscl.v2i1.388.

Jazilah, N., Fajrin, F. A., Hidayati, S., & Usman, M. R. (2024). The effect of banana peel (Musa paradisiaca L.) ethanol extract on the blood glucose level of diabetic mice with alloxan induction. Pharmacon: Jurnal Farmasi Indonesia, 13(1), 110–117.

Jia, R. B., Wu, J., Li, Z. R., Ou, Z. R., Zhu, Q., Sun, B., & Zhao, M. (2020). Comparison of physicochemical properties and antidiabetic effects of polysaccharides extracted from three seaweed species. International Journal of Biological Macromolecules, 149, 81–92. DOI: 10.1016/j.ijbiomac.2020.01.111.

Kalungia, A. C., Mataka, M., Kaonga, P., Bwalya, A. G., Prashar, L., & Munkombwe, D. (2018). Opuntia stricta cladode extract reduces blood glucose levels in alloxan-induced diabetic mice. International Journal of Diabetes Research, 7(1), 1–11. DOI: 10.22271/phyto.2022.v11.i2a.14359.

Khoirunnisa, N., Makmun, A., Surdam, Z., Nur, M. J., Ardiansar, A. M., & Zulfahmidah, Z. (2025). The effect of Nigella sativa L. extract on blood glucose levels in alloxan-induced hyperglycemic Mus musculus. Journal La Medihealtico, 6(3), 477–485. DOI: 10.1002/ptr.6708.

Li, J., Li, J., & Fan, L. (2023). Recent advances in alleviating hyperuricemia through dietary sources: Bioactive ingredients and structure–activity relationships. Food Reviews International, 39(9), 6746–6780. DOI: 10.1080/87559129.2022.2124414.

Lolok, N., Sumiwi, S. A., Sahidin, I., & Levita, J. (2023). Stigmasterol isolated from the ethyl acetate fraction of Morinda citrifolia fruit (using the bioactivity-guided method) inhibits α-amylase activity: In vitro and in vivo analyses. World Academy of Sciences Journal, 5(5), 25. DOI: 10.3892/wasj.2023.202.

Mantur, P., Damanik, E. M. B., Setianingrum, E. L. S., & Pakan, P. (2023). The effect of lemon extract (Citrus limon) on blood sugar levels and pancreatic beta cell regeneration in alloxan-induced hyperglycemic mice. Acta Biochimica Indonesiana, 6(1), 97–97. DOI: 10.32889/actabiona.97.

Mohapatra, L., Bhattamishra, S. K., Panigrahy, R., Parida, S., & Pati, P. (2016). Antidiabetic effect of Sargassum wightii and Ulva fasciata in high fat diet and multi low dose streptozotocin-induced type 2 diabetic mice. Pharmaceutical and Biosciences Journal, 4(1), 13–23. DOI: 10.20510/ukjpb/4/i2/97081.

Ratwita, W., Sukandar, E. Y., Adnyana, I. K., & Kurniati, N. F. (2019). Alpha mangostin and xanthone activity on fasting blood glucose, insulin, and islets of Langerhans in alloxan-induced diabetic mice. Pharmacognosy Journal, 11(1), 123–129. DOI: 10.5530/pj.2019.1.12.

Salem, M. A., Hamdan, D. I., Mostafa, I., Adel, R., Elissawy, A., & El-Shazly, A. M. (2020). Natural products, the new intervention regime of metabolic disorders. In A. Atta-ur-Rahman, S. Anjum, & H. R. El-Seedi (Eds.), Natural products in clinical trials (Vol. 2, pp. 32–122). Bentham Science Publishers.

Sharma, B., Siddiqui, S., Ram, G., Chaudhary, M., & Sharma, G. (2013). Hypoglycemic and hepatoprotective effects of processed Aloe vera gel in a mice model of alloxan-induced diabetes mellitus. Journal of Diabetes & Metabolism, 4(9), 1–6. DOI: 10.4172/2155-6156.1000303.

Simanjuntak, H. A., & Gurning, K. (2020). The effect of infusion breadfruit leaves (Artocarpus altilis [Parkinson] Fosberg) on blood glucose levels in male mice (Mus musculus) with type 2 diabetes mellitus. Asian Journal of Pharmaceutical Research and Development, 8(6), 1–4. DOI: 10.13005/bpj/2637.

Solikhah, T. I., & Solikhah, G. P. (2021). Effect of Muntingia calabura L. leaf extract on blood glucose levels and body weight of alloxan-induced diabetic mice. Pharmacognosy Journal, 13(6), 1403–1408. DOI: 10.5530/pj.2021.13.184.

Syaifurrisal, A., Suciyono, S., Santanumurti, M. B., Prajitno, A., Fadjar, M., Riyadi, F. M., & Abualreesh, M. H. (2024). Effect of curry leaf (Murraya koenigii) as edwardsiellosis treatment on gourami fish (Osphronemus goramy). Aquatic Sciences and Engineering, 39(3), 179–188. DOI: 10.26650/ASE20231367517.

Yoshari, R. M., Astawan, M., Prangdimurti, E., & Wresdiyati, T. (2023). The production process of tempe protein isolate from germinated soybeans and its potential as an antidiabetic. Food Research, 7(Suppl. 1), 71–79. DOI: 10.26656/fr.2017.7(S1).23.

Yuniarti, E., & Ramadhani, S. (2023). Effect of catechins Uncaria gambir Roxb. on blood sugar levels of Mus musculus L. hyperglycemia. Jurnal Penelitian Pendidikan IPA, 9(7), 4917–4922. DOI: 10.29303/jppipa.v9i7.3476.

Zhang, J., Qiu, H., Huang, J., Ding, S., Huang, B., Wu, Q., & Jiang, Q. (2018). Establishment of a diabetic myocardial hypertrophy model in Mus musculus castaneus mouse. International Journal of Experimental Pathology, 99(6), 295–303. DOI: 10.1111/iep.12296.

Zhang, J., Tiller, C., Shen, J., Wang, C., Girouard, G. S., Dennis, D., & Ewart, H. S. (2007). Antidiabetic properties of polysaccharide- and polyphenolic-enriched fractions from the brown seaweed Ascophyllum nodosum. Canadian Journal of Physiology and Pharmacology, 85(11), 1116–1123. DOI: 10.1139/Y07-105.

Author Biographies

Abdul Hakim Laenggeng, Tadulako University

Author Origin : Indonesia

Asriani Hasanuddin, Tadulako University

Author Origin : Indonesia

Sitti Nuryanti, Tadulako University

Author Origin : Indonesia

Manap Trianto, Tadulako University

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Laenggeng, A. H., Hasanuddin, A., Nuryanti, S., & Trianto, M. (2025). The Effect of Seaweed Soy Tempe Extract on the Reduction of Blood Sugar Levels in Alloxan Induced Rats (Mus musculus). Jurnal Penelitian Pendidikan IPA, 11(7), 402–409. https://doi.org/10.29303/jppipa.v11i7.11307