Carbon Nanomaterial from Watermelon Skin Waste for Parallel Plate Capacitor Dielectric Material
DOI:
10.29303/jppipa.v11i7.11471Published:
2025-07-25Downloads
Abstract
Watermelon skin waste, typically underutilized, holds potential as an eco-friendly and efficient carbon nanomaterial for parallel-plate capacitor dielectric filler. The need for efficient and environmentally friendly dielectric materials drives the exploration of alternative resources. This study examines the potential of watermelon rind waste to be converted into promising carbon nanomaterials as dielectric materials in parallel plate capacitors, potentially overcoming challenges in the development of energy storage devices. This study synthesizes carbon nanomaterials from watermelon skin waste and evaluates their role as filler on the capacitance of the parallel-plate capacitor. Carbonization techniques of Two-Steps Low Heating (TSLH) method were employed with characterizations via PSA, XRD, and UV-Vis revealing nanoparticle properties, amorphous patterns, and UV absorption peaks. Capacitance testing using an LCR meter demonstrated significant capacitance enhancement, reaching a maximum capacitance of 63 µF with a five-layer carbon-based dielectric material modification using HCl solution. These findings suggest watermelon skin-derived carbon nanomaterials as a viable eco-friendly alternative for energy storage, supporting sustainability, and waste management.
Keywords:
Carbon nanomaterials Dielectric material Parallel-plate capacitors Watermelon skin wasteReferences
Ahmed, M. M. S., Hasan, M. J., Chowdhury, M. S., Rahman, M. K., Islam, M. S., Hossain, M. S., Islam, Md. A., Hossain, N., & Mobarak, M. H. (2024). Prospects and challenges of energy storage materials: A comprehensive review. Chemical Engineering Journal Advances, 20, 100657. https://doi.org/10.1016/j.ceja.2024.100657
Al-Saleh, M. H. (2015). Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposites. Synthetic Metals, 209, 41–46. https://doi.org/10.1016/j.synthmet.2015.06.023
Bastida, J., & Pardo-Ibañez, P. (2024). Applications of X-ray Powder Diffraction Microstructural Analysis in Applied Clay Mineralogy. Minerals, 14(6), 584. https://doi.org/10.3390/min14060584
Bazaka, K., Jacob, M. V., & Ostrikov, K. (Ken). (2016). Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons. Chemical Reviews, 116(1), 163–214. https://doi.org/10.1021/acs.chemrev.5b00566
Budiman, A., Hafidz, N. P. M., Azzahra, R. S. S., Amaliah, S., Sitinjak, F. Y., Rusdin, A., Subra, L., & Aulifa, D. L. (2024). Advancing the Physicochemical Properties and Therapeutic Potential of Plant Extracts Through Amorphous Solid Dispersion Systems. Polymers, 16(24), 3489. https://doi.org/10.3390/polym16243489
Du, X., & Ramirez, J. (2022). Watermelon Rind and Flesh Volatile Profiles and Cultivar Difference. Horticulturae, 8(2), 99. https://doi.org/10.3390/horticulturae8020099
Gray, S. B., & Brady, S. M. (2016). Plant developmental responses to climate change. Developmental Biology, 419(1), 64–77. https://doi.org/10.1016/j.ydbio.2016.07.023
Jeerapan, I., & Ma, N. (2019). Challenges and Opportunities of Carbon Nanomaterials for Biofuel Cells and Supercapacitors: Personalized Energy for Futuristic Self-Sustainable Devices. C, 5(4), 62. https://doi.org/10.3390/c5040062
Jiang, J., Shen, Q., Chen, Z., & Wang, S. (2023). Nitrogen-Doped Porous Carbon Derived from Coal for High-Performance Dual-Carbon Lithium-Ion Capacitors. Nanomaterials, 13(18), 2525. https://doi.org/10.3390/nano13182525
Kang, C., Huang, Y., Yang, H., Yan, X. F., & Chen, Z. P. (2020). A Review of Carbon Dots Produced from Biomass Wastes. Nanomaterials, 10(11), 2316. https://doi.org/10.3390/nano10112316
Keshyagol, K., Hiremath, S., H. M., V., & Hiremath, P. (2023). Estimation of Energy Storage Capability of the Parallel Plate Capacitor Filled with Distinct Dielectric Materials. RAiSE-2023, 95. https://doi.org/10.3390/engproc2023059095
Khaled, D., Novas, N., Gazquez, J., Garcia, R., & Manzano-Agugliaro, F. (2015). Fruit and Vegetable Quality Assessment via Dielectric Sensing. Sensors, 15(7), 15363–15397. https://doi.org/10.3390/s150715363
Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011
Kumar, N., Aepuru, R., Lee, S.-Y., & Park, S.-J. (2025). Advances in Catalysts for Hydrogen Production: A Comprehensive Review of Materials and Mechanisms. Nanomaterials, 15(4), 256. https://doi.org/10.3390/nano15040256
Lakshmi, K. C. S., & Vedhanarayanan, B. (2023). High-Performance Supercapacitors: A Comprehensive Review on Paradigm Shift of Conventional Energy Storage Devices. Batteries, 9(4), 202. https://doi.org/10.3390/batteries9040202
Lee, A., Lan, J. C.-W., Jambrak, A. R., Chang, J.-S., Lim, J. W., & Khoo, K. S. (2024). Upcycling fruit waste into microalgae biotechnology: Perspective views and way forward. Food Chemistry: Molecular Sciences, 8, 100203. https://doi.org/10.1016/j.fochms.2024.100203
Liu, B., Sun, J., Zhao, J., & Yun, X. (2025). Hybrid graphene and carbon nanotube–reinforced composites: Polymer, metal, and ceramic matrices. Advanced Composites and Hybrid Materials, 8(1), 1. https://doi.org/10.1007/s42114-024-01074-3
Mokhena, T. C., Mochane, M. J., Mtibe, A., Sigonya, S., Ntsendwana, B., Masibi, E. G., Sikhwivhilu, L., & Motsoeneng, T. S. (2024). Recent advances on nanocellulose-graphene oxide composites: A review. Cellulose, 31(12), 7207–7249. https://doi.org/10.1007/s10570-024-06055-9
Nguyen, T. T. H., Phan, G. Q., Tran, T. K., & Bui, H. M. (2023). The role of renewable energy technologies in enhancing human development: Empirical evidence from selected countries. Case Studies in Chemical and Environmental Engineering, 8, 100496. https://doi.org/10.1016/j.cscee.2023.100496
Olsommer, Y., & Ihmig, F. R. (2020). Consistent and Efficient Modeling of the Nonlinear Properties of Ferroelectric Materials in Ceramic Capacitors for Frugal Electronic Implants. Sensors, 20(15), 4206. https://doi.org/10.3390/s20154206
Orasugh, J. T., Temane, L. T., & Ray, S. S. (2024). Nanocellulose-based conductive composites: A review of systems for electromagnetic interference shielding applications. International Journal of Biological Macromolecules, 277, 133891. https://doi.org/10.1016/j.ijbiomac.2024.133891
Pesode, P., Barve, S., Wankhede, S. V., & Ahmad, A. (2023). Sustainable Materials and Technologies for Biomedical Applications. Advances in Materials Science and Engineering, 2023, 1–22. https://doi.org/10.1155/2023/6682892
Puthusseri, D., Aravindan, V., Madhavi, S., & Ogale, S. (2014). 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: The magic of in situ porogen formation. Energy Environ. Sci., 7(2), 728–735. https://doi.org/10.1039/C3EE42551G
Robinson, J., Kumari, N., Srivastava, V., Taskaeva, N., & Mohan, C. (2022). Sustainable and environmental friendly energy materials. Materials Today: Proceedings, 69, 494–498. https://doi.org/10.1016/j.matpr.2022.09.187
Rodoshi Khan, N., & Bin Rashid, A. (2024). Carbon-Based Nanomaterials: A Paradigm Shift in Biofuel Synthesis and Processing for a Sustainable Energy Future. Energy Conversion and Management: X, 22, 100590. https://doi.org/10.1016/j.ecmx.2024.100590
Sambodo, M. T., Silalahi, M., & Firdaus, N. (2024). Investigating technology development in the energy sector and its implications for Indonesia. Heliyon, 10(6), e27645. https://doi.org/10.1016/j.heliyon.2024.e27645
Sharma, V., Tsai, M.-L., Nargotra, P., Chen, C.-W., Kuo, C.-H., Sun, P.-P., & Dong, C.-D. (2022). Agro-Industrial Food Waste as a Low-Cost Substrate for Sustainable Production of Industrial Enzymes: A Critical Review. Catalysts, 12(11), 1373. https://doi.org/10.3390/catal12111373
Steinhart, M. (2004). Physics and Chemistry of Interfaces. Von Hans‐Jürgen Butt, Karlheinz Graf und Michael Kappl. Angewandte Chemie, 116(27), 3593–3593. https://doi.org/10.1002/ange.200385136
Surya, B., Muhibuddin, A., Suriani, S., Rasyidi, E. S., Baharuddin, B., Fitriyah, A. T., & Abubakar, H. (2021). Economic Evaluation, Use of Renewable Energy, and Sustainable Urban Development Mamminasata Metropolitan, Indonesia. Sustainability, 13(3), 1165. https://doi.org/10.3390/su13031165
Tawalbeh, M., Muhammad Nauman Javed, R., Al-Othman, A., & Almomani, F. (2022). The novel advancements of nanomaterials in biofuel cells with a focus on electrodes’ applications. Fuel, 322, 124237. https://doi.org/10.1016/j.fuel.2022.124237
Theodorakopoulos, G. V., Karousos, D. S., Benra, J., Forero, S., Hammerstein, R., Sapalidis, A. A., Katsaros, F. K., Schubert, T., & Favvas, E. P. (2024). Well-established carbon nanomaterials: Modification, characterization and dispersion in different solvents. Journal of Materials Science, 59(8), 3339–3362. https://doi.org/10.1007/s10853-024-09413-x
Tiwari, S. K., Bystrzejewski, M., De Adhikari, A., Huczko, A., & Wang, N. (2022). Methods for the conversion of biomass waste into value-added carbon nanomaterials: Recent progress and applications. Progress in Energy and Combustion Science, 92, 101023. https://doi.org/10.1016/j.pecs.2022.101023
Tumimomor, F. R., & Palilingan, S. C. (2018). Pemanfaatan karbon aktif dari sabut kelapa sebagai elektroda superkapasitor. Fullerene Journal of Chemistry, 3(1), 13. https://doi.org/10.37033/fjc.v3i1.29
Wang, X., Wang, J., Sun, Y., Li, K., Shang, T., & Wan, Y. (2022). Recent advances and perspectives of CeO2-based catalysts: Electronic properties and applications for energy storage and conversion. Frontiers in Chemistry, 10, 1089708. https://doi.org/10.3389/fchem.2022.1089708
Wenten, I. G., Khoiruddin, K., & Siagian, U. W. R. (2024). Green Energy Technologies: A Key Driver in Carbon Emission Reduction. Journal of Engineering and Technological Sciences, 56(2), 143–192. https://doi.org/10.5614/j.eng.technol.sci.2024.56.2.1
Yudaev, I., Daus, Y., Panchenko, V., & Bolshev, V. (2023). Influence of Factors Determining Weeds’ Plant Tissue Reaction to the Electric Pulse Damage Impact. Agriculture, 13(5), 1099. https://doi.org/10.3390/agriculture13051099
Yusnidah, Y. (2023). Current and Voltage Analysis of the Influence of Capacitors on Electrical Loads. Jurnal Penelitian Pendidikan IPA, 9(11), 10146–10150. https://doi.org/10.29303/jppipa.v9i11.5733
Zeng, Q., Li, C., & Magazzino, C. (2024). Impact of green energy production for sustainable economic growth and green economic recovery. Heliyon, 10(17), e36643. https://doi.org/10.1016/j.heliyon.2024.e36643
Zhang, Q., Soham, D., Liang, Z., & Wan, J. (2025). Advances in wearable energy storage and harvesting systems. Med-X, 3(1), 3. https://doi.org/10.1007/s44258-024-00048-w
Zhu, Y., Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W., Ferreira, P. J., Pirkle, A., Wallace, R. M., Cychosz, K. A., Thommes, M., Su, D., Stach, E. A., & Ruoff, R. S. (2011). Carbon-Based Supercapacitors Produced by Activation of Graphene. Science, 332(6037), 1537–1541. https://doi.org/10.1126/science.1200770
License
Copyright (c) 2025 Eggydhia Ananda Rania Balqist, Nisrina Hasna Mustofa, Yutisa Is Dhiarni, Suparno, Wipsar Sunu Brams Dwandaru

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






