Vol. 11 No. 7 (2025): July
Open Access
Peer Reviewed

Carbon Nanomaterial from Watermelon Skin Waste for Parallel Plate Capacitor Dielectric Material

Authors

Eggydhia Ananda Rania Balqist , Nisrina Hasna Mustofa , Yutisa Is Dhiarni , Suparno , Wipsar Sunu Brams Dwandaru

DOI:

10.29303/jppipa.v11i7.11471

Published:

2025-07-25

Downloads

Abstract

Watermelon skin waste, typically underutilized, holds potential as an eco-friendly and efficient carbon nanomaterial for parallel-plate capacitor dielectric filler. The need for efficient and environmentally friendly dielectric materials drives the exploration of alternative resources. This study examines the potential of watermelon rind waste to be converted into promising carbon nanomaterials as dielectric materials in parallel plate capacitors, potentially overcoming challenges in the development of energy storage devices. This study synthesizes carbon nanomaterials from watermelon skin waste and evaluates their role as filler on the capacitance of the parallel-plate capacitor. Carbonization techniques of Two-Steps Low Heating (TSLH) method were employed with characterizations via PSA, XRD, and UV-Vis revealing nanoparticle properties, amorphous patterns, and UV absorption peaks. Capacitance testing using an LCR meter demonstrated significant capacitance enhancement, reaching a maximum capacitance of 63 µF with a five-layer carbon-based dielectric material modification using HCl solution. These findings suggest watermelon skin-derived carbon nanomaterials as a viable eco-friendly alternative for energy storage, supporting sustainability, and waste management.

Keywords:

Carbon nanomaterials Dielectric material Parallel-plate capacitors Watermelon skin waste

References

Ahmed, M. M. S., Hasan, M. J., Chowdhury, M. S., Rahman, M. K., Islam, M. S., Hossain, M. S., Islam, Md. A., Hossain, N., & Mobarak, M. H. (2024). Prospects and challenges of energy storage materials: A comprehensive review. Chemical Engineering Journal Advances, 20, 100657. https://doi.org/10.1016/j.ceja.2024.100657

Al-Saleh, M. H. (2015). Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposites. Synthetic Metals, 209, 41–46. https://doi.org/10.1016/j.synthmet.2015.06.023

Bastida, J., & Pardo-Ibañez, P. (2024). Applications of X-ray Powder Diffraction Microstructural Analysis in Applied Clay Mineralogy. Minerals, 14(6), 584. https://doi.org/10.3390/min14060584

Bazaka, K., Jacob, M. V., & Ostrikov, K. (Ken). (2016). Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons. Chemical Reviews, 116(1), 163–214. https://doi.org/10.1021/acs.chemrev.5b00566

Budiman, A., Hafidz, N. P. M., Azzahra, R. S. S., Amaliah, S., Sitinjak, F. Y., Rusdin, A., Subra, L., & Aulifa, D. L. (2024). Advancing the Physicochemical Properties and Therapeutic Potential of Plant Extracts Through Amorphous Solid Dispersion Systems. Polymers, 16(24), 3489. https://doi.org/10.3390/polym16243489

Du, X., & Ramirez, J. (2022). Watermelon Rind and Flesh Volatile Profiles and Cultivar Difference. Horticulturae, 8(2), 99. https://doi.org/10.3390/horticulturae8020099

Gray, S. B., & Brady, S. M. (2016). Plant developmental responses to climate change. Developmental Biology, 419(1), 64–77. https://doi.org/10.1016/j.ydbio.2016.07.023

Jeerapan, I., & Ma, N. (2019). Challenges and Opportunities of Carbon Nanomaterials for Biofuel Cells and Supercapacitors: Personalized Energy for Futuristic Self-Sustainable Devices. C, 5(4), 62. https://doi.org/10.3390/c5040062

Jiang, J., Shen, Q., Chen, Z., & Wang, S. (2023). Nitrogen-Doped Porous Carbon Derived from Coal for High-Performance Dual-Carbon Lithium-Ion Capacitors. Nanomaterials, 13(18), 2525. https://doi.org/10.3390/nano13182525

Kang, C., Huang, Y., Yang, H., Yan, X. F., & Chen, Z. P. (2020). A Review of Carbon Dots Produced from Biomass Wastes. Nanomaterials, 10(11), 2316. https://doi.org/10.3390/nano10112316

Keshyagol, K., Hiremath, S., H. M., V., & Hiremath, P. (2023). Estimation of Energy Storage Capability of the Parallel Plate Capacitor Filled with Distinct Dielectric Materials. RAiSE-2023, 95. https://doi.org/10.3390/engproc2023059095

Khaled, D., Novas, N., Gazquez, J., Garcia, R., & Manzano-Agugliaro, F. (2015). Fruit and Vegetable Quality Assessment via Dielectric Sensing. Sensors, 15(7), 15363–15397. https://doi.org/10.3390/s150715363

Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

Kumar, N., Aepuru, R., Lee, S.-Y., & Park, S.-J. (2025). Advances in Catalysts for Hydrogen Production: A Comprehensive Review of Materials and Mechanisms. Nanomaterials, 15(4), 256. https://doi.org/10.3390/nano15040256

Lakshmi, K. C. S., & Vedhanarayanan, B. (2023). High-Performance Supercapacitors: A Comprehensive Review on Paradigm Shift of Conventional Energy Storage Devices. Batteries, 9(4), 202. https://doi.org/10.3390/batteries9040202

Lee, A., Lan, J. C.-W., Jambrak, A. R., Chang, J.-S., Lim, J. W., & Khoo, K. S. (2024). Upcycling fruit waste into microalgae biotechnology: Perspective views and way forward. Food Chemistry: Molecular Sciences, 8, 100203. https://doi.org/10.1016/j.fochms.2024.100203

Liu, B., Sun, J., Zhao, J., & Yun, X. (2025). Hybrid graphene and carbon nanotube–reinforced composites: Polymer, metal, and ceramic matrices. Advanced Composites and Hybrid Materials, 8(1), 1. https://doi.org/10.1007/s42114-024-01074-3

Mokhena, T. C., Mochane, M. J., Mtibe, A., Sigonya, S., Ntsendwana, B., Masibi, E. G., Sikhwivhilu, L., & Motsoeneng, T. S. (2024). Recent advances on nanocellulose-graphene oxide composites: A review. Cellulose, 31(12), 7207–7249. https://doi.org/10.1007/s10570-024-06055-9

Nguyen, T. T. H., Phan, G. Q., Tran, T. K., & Bui, H. M. (2023). The role of renewable energy technologies in enhancing human development: Empirical evidence from selected countries. Case Studies in Chemical and Environmental Engineering, 8, 100496. https://doi.org/10.1016/j.cscee.2023.100496

Olsommer, Y., & Ihmig, F. R. (2020). Consistent and Efficient Modeling of the Nonlinear Properties of Ferroelectric Materials in Ceramic Capacitors for Frugal Electronic Implants. Sensors, 20(15), 4206. https://doi.org/10.3390/s20154206

Orasugh, J. T., Temane, L. T., & Ray, S. S. (2024). Nanocellulose-based conductive composites: A review of systems for electromagnetic interference shielding applications. International Journal of Biological Macromolecules, 277, 133891. https://doi.org/10.1016/j.ijbiomac.2024.133891

Pesode, P., Barve, S., Wankhede, S. V., & Ahmad, A. (2023). Sustainable Materials and Technologies for Biomedical Applications. Advances in Materials Science and Engineering, 2023, 1–22. https://doi.org/10.1155/2023/6682892

Puthusseri, D., Aravindan, V., Madhavi, S., & Ogale, S. (2014). 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: The magic of in situ porogen formation. Energy Environ. Sci., 7(2), 728–735. https://doi.org/10.1039/C3EE42551G

Robinson, J., Kumari, N., Srivastava, V., Taskaeva, N., & Mohan, C. (2022). Sustainable and environmental friendly energy materials. Materials Today: Proceedings, 69, 494–498. https://doi.org/10.1016/j.matpr.2022.09.187

Rodoshi Khan, N., & Bin Rashid, A. (2024). Carbon-Based Nanomaterials: A Paradigm Shift in Biofuel Synthesis and Processing for a Sustainable Energy Future. Energy Conversion and Management: X, 22, 100590. https://doi.org/10.1016/j.ecmx.2024.100590

Sambodo, M. T., Silalahi, M., & Firdaus, N. (2024). Investigating technology development in the energy sector and its implications for Indonesia. Heliyon, 10(6), e27645. https://doi.org/10.1016/j.heliyon.2024.e27645

Sharma, V., Tsai, M.-L., Nargotra, P., Chen, C.-W., Kuo, C.-H., Sun, P.-P., & Dong, C.-D. (2022). Agro-Industrial Food Waste as a Low-Cost Substrate for Sustainable Production of Industrial Enzymes: A Critical Review. Catalysts, 12(11), 1373. https://doi.org/10.3390/catal12111373

Steinhart, M. (2004). Physics and Chemistry of Interfaces. Von Hans‐Jürgen Butt, Karlheinz Graf und Michael Kappl. Angewandte Chemie, 116(27), 3593–3593. https://doi.org/10.1002/ange.200385136

Surya, B., Muhibuddin, A., Suriani, S., Rasyidi, E. S., Baharuddin, B., Fitriyah, A. T., & Abubakar, H. (2021). Economic Evaluation, Use of Renewable Energy, and Sustainable Urban Development Mamminasata Metropolitan, Indonesia. Sustainability, 13(3), 1165. https://doi.org/10.3390/su13031165

Tawalbeh, M., Muhammad Nauman Javed, R., Al-Othman, A., & Almomani, F. (2022). The novel advancements of nanomaterials in biofuel cells with a focus on electrodes’ applications. Fuel, 322, 124237. https://doi.org/10.1016/j.fuel.2022.124237

Theodorakopoulos, G. V., Karousos, D. S., Benra, J., Forero, S., Hammerstein, R., Sapalidis, A. A., Katsaros, F. K., Schubert, T., & Favvas, E. P. (2024). Well-established carbon nanomaterials: Modification, characterization and dispersion in different solvents. Journal of Materials Science, 59(8), 3339–3362. https://doi.org/10.1007/s10853-024-09413-x

Tiwari, S. K., Bystrzejewski, M., De Adhikari, A., Huczko, A., & Wang, N. (2022). Methods for the conversion of biomass waste into value-added carbon nanomaterials: Recent progress and applications. Progress in Energy and Combustion Science, 92, 101023. https://doi.org/10.1016/j.pecs.2022.101023

Tumimomor, F. R., & Palilingan, S. C. (2018). Pemanfaatan karbon aktif dari sabut kelapa sebagai elektroda superkapasitor. Fullerene Journal of Chemistry, 3(1), 13. https://doi.org/10.37033/fjc.v3i1.29

Wang, X., Wang, J., Sun, Y., Li, K., Shang, T., & Wan, Y. (2022). Recent advances and perspectives of CeO2-based catalysts: Electronic properties and applications for energy storage and conversion. Frontiers in Chemistry, 10, 1089708. https://doi.org/10.3389/fchem.2022.1089708

Wenten, I. G., Khoiruddin, K., & Siagian, U. W. R. (2024). Green Energy Technologies: A Key Driver in Carbon Emission Reduction. Journal of Engineering and Technological Sciences, 56(2), 143–192. https://doi.org/10.5614/j.eng.technol.sci.2024.56.2.1

Yudaev, I., Daus, Y., Panchenko, V., & Bolshev, V. (2023). Influence of Factors Determining Weeds’ Plant Tissue Reaction to the Electric Pulse Damage Impact. Agriculture, 13(5), 1099. https://doi.org/10.3390/agriculture13051099

Yusnidah, Y. (2023). Current and Voltage Analysis of the Influence of Capacitors on Electrical Loads. Jurnal Penelitian Pendidikan IPA, 9(11), 10146–10150. https://doi.org/10.29303/jppipa.v9i11.5733

Zeng, Q., Li, C., & Magazzino, C. (2024). Impact of green energy production for sustainable economic growth and green economic recovery. Heliyon, 10(17), e36643. https://doi.org/10.1016/j.heliyon.2024.e36643

Zhang, Q., Soham, D., Liang, Z., & Wan, J. (2025). Advances in wearable energy storage and harvesting systems. Med-X, 3(1), 3. https://doi.org/10.1007/s44258-024-00048-w

Zhu, Y., Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W., Ferreira, P. J., Pirkle, A., Wallace, R. M., Cychosz, K. A., Thommes, M., Su, D., Stach, E. A., & Ruoff, R. S. (2011). Carbon-Based Supercapacitors Produced by Activation of Graphene. Science, 332(6037), 1537–1541. https://doi.org/10.1126/science.1200770

Author Biographies

Eggydhia Ananda Rania Balqist, Universitas Negeri Yogyakarta

Author Origin : Indonesia

Nisrina Hasna Mustofa, Universitas Negeri Yogyakarta

Author Origin : Indonesia

Yutisa Is Dhiarni, Universitas Negeri Yogyakarta

Author Origin : Indonesia

Suparno, Universitas Negeri Yogyakarta

Author Origin : Indonesia

Wipsar Sunu Brams Dwandaru, Universitas Negeri Yogyakarta

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Balqist, E. A. R., Mustofa, N. H., Dhiarni, Y. I., Suparno, & Dwandaru, W. S. B. (2025). Carbon Nanomaterial from Watermelon Skin Waste for Parallel Plate Capacitor Dielectric Material. Jurnal Penelitian Pendidikan IPA, 11(7), 214–220. https://doi.org/10.29303/jppipa.v11i7.11471