Synthesis and Characterization of Cellulose-Based Hydrogel from Durian Rind for Peat Water Purification
DOI:
10.29303/jppipa.v11i8.11514Published:
2025-08-31Downloads
Abstract
Peat water in Indonesia, abundant in swamp regions, is acidic and rich in humic substances and Fe²⁺ ions, making it unsuitable for direct use. This study explores a sustainable approach to treating peat water using hydrogel synthesized from durian rind (Durio zibethinus), an agricultural waste rich in cellulose. Cellulose was extracted via alkali and bleaching treatment, then crosslinked with chitosan in a NaOH/urea solvent system to form a biodegradable, porous hydrogel. The hydrogel exhibited a swelling ratio of 857% and a gel content of 98.23%, indicating high hydrophilicity and network integrity. Adsorption experiments demonstrated removal efficiencies of 98.96% for methylene blue and 25% for Fe²⁺. The high dye removal at low concentrations suggests strong interaction between hydrogel functional groups (–OH, –NH₂) and organic molecules, while Fe²⁺ removal was attributed to electrostatic interaction and potential chelation. Adsorption followed pseudo-second-order kinetics, indicating chemisorption as the rate-limiting step. These results suggest that durian rind hydrogel is a promising low-cost material for organic and inorganic pollutant removal in acidic water systems. This study highlights the potential of agro-waste valorization in developing eco-friendly materials for water purification.
Keywords:
Adsorption Durian rind Hydrogel Peat water Water treatmentReferences
Akhtar, M. S., Ali, S., & Zaman, W. (2024). Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications. Molecules, 29(18), 4317. https://doi.org/10.3390/molecules29184317
Alaoui, C. H., Réthoré, G., Weiss, P., & Fatimi, A. (2023). Sustainable Biomass Lignin-Based Hydrogels: A Review on Properties, Formulation, and Biomedical Applications. International Journal of Molecular Sciences, 24(17), 13493. https://doi.org/10.3390/ijms241713493
Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Heras Caballero, A., & Acosta, N. (2021). Chitosan: An Overview of Its Properties and Applications. Polymers, 13(19), 3256. https://doi.org/10.3390/polym13193256
Astuti, D., Awang, N., Othman, M. S. Bin, Kamaludin, N. F. B., Meng, C. K., & Mutalazimah, M. (2023). Analysis of Heavy Metals Concentration in Textile Wastewater in Batik Industry Center. Jurnal Penelitian Pendidikan IPA, 9(3), 1176–1181. https://doi.org/10.29303/jppipa.v9i3.3085
Bakshi, M. I., Nazir, S., Restu, W. K., Rajamanickam, R., Selvasembian, R., Hua, L. S., Antov, P., Yadav, K. K., Abbas, M., Farobie, O., & Fatriasari, W. (2025). Recent advances in lignin from forest residue for hydrogel application. Biomass Conversion and Biorefinery, 15(8), 11475–11491. https://doi.org/10.1007/s13399-024-05973-9
Barus, D. A., Humaidi, S., Ginting, R. T., & Sitepu, J. (2022). Enhanced adsorption performance of chitosan/cellulose nanofiber isolated from durian peel waste/graphene oxide nanocomposite hydrogels. Environmental Nanotechnology, Monitoring & Management, 17, 100650. https://doi.org/10.1016/j.enmm.2022.100650
Chelu, M., Musuc, A. M., Popa, M., & Calderon Moreno, J. M. (2023). Chitosan Hydrogels for Water Purification Applications. Gels, 9(8), 664. https://doi.org/10.3390/gels9080664
Darban, Z., Shahabuddin, S., Gaur, R., Ahmad, I., & Sridewi, N. (2022). Hydrogel-Based Adsorbent Material for the Effective Removal of Heavy Metals from Wastewater: A Comprehensive Review. Gels, 8(5), 263. https://doi.org/10.3390/gels8050263
Das, A., Ghosh, S., & Pramanik, N. (2024). Chitosan biopolymer and its composites: Processing, properties and applications- A comprehensive review. Hybrid Advances, 6, 100265. https://doi.org/10.1016/j.hybadv.2024.100265
Du, Y., Zheng, Y., Liu, H., Zhao, S., Wang, X., & Yang, L. (2025). Moisture Harvesting by the Structure Regulation of Hygroscopic Hydrogel for Energy and Water Sustainability. Advanced Electronic Materials. https://doi.org/10.1002/aelm.202400802
Dutta, S., Gupta, B., Srivastava, S. K., & Gupta, A. K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Materials Advances, 2(14), 4497–4531. https://doi.org/10.1039/D1MA00354B
Edo, G. I., Yousif, E., & Al-Mashhadani, M. H. (2024). Chitosan: An overview of biological activities, derivatives, properties, and current advancements in biomedical applications. Carbohydrate Research, 542, 109199. https://doi.org/10.1016/j.carres.2024.109199
Ekoputri, S. F., Rahmatunnissa, A., Nulfaidah, F., Ratnasari, Y., Djaeni, M., & Sari, D. A. (2023). Pengolahan Air Limbah dengan Metode Koagulasi Flokulasi pada Industri Kimia. Jurnal Serambi Engineering, 9(1), 7781–7787. https://doi.org/10.32672/jse.v9i1.715
Fransiska, G., Sari, A., & Yolanda, D. (2024). Krisis Air Menangani Penyediaan Air Bersih Di Dunia Yang Semakin Kekurangan Sumber Daya. Jurnal Ilmiah Research Student, 1(5), 334–341. https://doi.org/10.61722/jirs.v1i5.1373
Geng, Z., Lin, Y., Yu, X., Shen, Q., Ma, L., Li, Z., Pan, N., & Wang, X. (2012). Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide–Fe3O4 nanoparticles as an easily regenerative adsorbent. Journal of Materials Chemistry, 22(8), 3527. https://doi.org/10.1039/c2jm15544c
George, G., Ealias, A. M., & Saravanakumar, M. P. (2024). Advancements in textile dye removal: a critical review of layered double hydroxides and clay minerals as efficient adsorbents. Environmental Science and Pollution Research, 31(9), 12748–12779. https://doi.org/10.1007/s11356-024-32021-w
Gonçalves, J. O., Strieder, M. M., Silva, L. F. O., dos Reis, G. S., & Dotto, G. L. (2024). Advanced technologies in water treatment: Chitosan and its modifications as effective agents in the adsorption of contaminants. International Journal of Biological Macromolecules, 270, 132307. https://doi.org/10.1016/j.ijbiomac.2024.132307
Guan, W., Zhao, Y., Lei, C., Wang, Y., Wu, K., & Yu, G. (2025). Molecularly Functionalized Biomass Hydrogels for Sustainable Atmospheric Water Harvesting. Advanced Materials, 37(22). https://doi.org/10.1002/adma.202420319
Haskis, P., Ioannidis, I., Mpeza, P., Giannopoulos, G., Barouchas, P., Selvasembian, R., Pashalidis, I., & Anastopoulos, I. (2024). Agricultural Biomass/Waste-Derived Adsorbents for the Abatement of Dye Pollutants in (Waste)Water. In A. Núñez-Delgado (Ed.), Planet Earth: Scientific Proposals to Solve Urgent Issues (pp. 161–183). Springer International Publishing. https://doi.org/10.1007/978-3-031-53208-5_8
Hong, F., Qiu, P., Wang, Y., Ren, P., Liu, J., Zhao, J., & Gou, D. (2024). Chitosan-based hydrogels: From preparation to applications, a review. Food Chemistry: X, 21, 101095. https://doi.org/10.1016/j.fochx.2023.101095
Islam, M. A., Morton, D. W., Johnson, B. B., & Angove, M. J. (2020). Adsorption of humic and fulvic acids onto a range of adsorbents in aqueous systems, and their effect on the adsorption of other species: A review. Separation and Purification Technology, 247, 116949. https://doi.org/10.1016/j.seppur.2020.116949
Jelita, J., Saragih, S. W., & Irham, W. H. (2024). BC-g-PAA: Characterization and Establishment of the IPN Hydrogel. Jurnal Penelitian Pendidikan IPA, 10(5), 2537–2544. https://doi.org/10.29303/jppipa.v10i5.7007
Jiménez-Gómez, C. P., & Cecilia, J. A. (2020). Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules, 25(17), 3981. https://doi.org/10.3390/molecules25173981
Kainth, S., Sharma, P., & Pandey, O. P. (2024). Green sorbents from agricultural wastes: A review of sustainable adsorption materials. Applied Surface Science Advances, 19, 100562. https://doi.org/10.1016/j.apsadv.2023.100562
Kalsum, L., Hasan, A., Hasan, J., & Sari, S. R. (2024). The Effect of Chicken Bones Powder Adsorbent Mass and its Contact Time on Reducing Color Concentration in Peat Water Treatment. Jurnal Penelitian Pendidikan IPA, 10(9), 7179–7185. https://doi.org/10.29303/jppipa.v10i9.4848
Mondal, A. K., Uddin, M. T., Sujan, S. M. A., Tang, Z., Alemu, D., Begum, H. A., Li, J., Huang, F., & Ni, Y. (2023). Preparation of lignin-based hydrogels, their properties and applications. International Journal of Biological Macromolecules, 245, 125580. https://doi.org/10.1016/j.ijbiomac.2023.125580
Oktavia, S., Rohmah, S., & Novi, C. (2024). Application of Chitosan from Litopenaeus vannamei and Baglog Waste from Pleurotus ostreatus for Decolorizing Batik Wastewater. Jurnal Penelitian Pendidikan IPA, 10(2), 638–647. https://doi.org/10.29303/jppipa.v10i2.5859
Pakdel, P. M., & Peighambardoust, S. J. (2018). Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydrate Polymers, 201, 264–279. https://doi.org/10.1016/j.carbpol.2018.08.070
Qadafi, M., Wulan, D. R., Notodarmojo, S., & Zevi, Y. (2023). Characteristics and treatment methods for peat water as clean water sources: A mini review. Water Cycle, 4, 60–69. https://doi.org/10.1016/j.watcyc.2023.02.005
Rico-García, D., Ruiz-Rubio, L., Pérez-Alvarez, L., Hernández-Olmos, S. L., Guerrero-Ramírez, G. L., & Vilas-Vilela, J. L. (2020). Lignin-Based Hydrogels: Synthesis and Applications. Polymers, 12(1), 81. https://doi.org/10.3390/polym12010081
Saiyad, M., Shah, N., Joshipura, M., Dwivedi, A., & Pillai, S. (2024). Chitosan and its derivatives in wastewater treatment application. Materials Today: Proceedings, 99, 190–194. https://doi.org/10.1016/j.matpr.2023.10.157
Saragih, S. W., Irham, W. H., Yosephine, I. O., Ferza, M., Yulia, B., & Fadhilah, A. (2025). Characteristics of Chitosan from Black Soldier Fly Pupa Shells as a Crosslinking Agent in the Manufacture of Slow-Release Fertilizer Hydrogels. Jurnal Penelitian Pendidikan IPA, 11(1), 558–566. https://doi.org/10.29303/jppipa.v11i1.9692
Sarah, F. (2018). Pembuatan Arang Aktif Dari Limbah Ampas Tebu Sebagai Adsorben Ion Fe2+ Dan Co2+. Jurnal Penelitian Pendidikan IPA, 4(2). https://doi.org/10.29303/jppipa.v4i2.110
Satyam, S., & Patra, S. (2024). Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon, 10(9), e29573. https://doi.org/10.1016/j.heliyon.2024.e29573
Sen, T. K. (2023). Agricultural Solid Wastes Based Adsorbent Materials in the Remediation of Heavy Metal Ions from Water and Wastewater by Adsorption: A Review. Molecules, 28(14), 5575. https://doi.org/10.3390/molecules28145575
Susanto, C., Halim, S., Rusip, G., Aurelia, N., & Susanto, C. (2024). Effectiveness of Acemannan Hydrogel Administration at Concentrations of 25 %, 50 %, 75 % Against Decrease in the Number of Macrophages in Periodontitis Rats with Diabetes Mellitus. Jurnal Penelitian Pendidikan, 10(24), 2186–2193. https://doi.org/10.29303/jppipa.v10i4.7077
Tawakkal, I. S. M. A., Talib, R. A., Abdan, K., & Ling, C. N. (2012). Mechanical And Physical Properties Of Kenaf-Derived Cellulose (KDC)-Filled Polylactic Acid (PLA) Composites. BioResources, 7(2), 6652–6662. https://doi.org/10.15376/biores.7.2.1643-1655
Tsoutsa, E. K., Tolkou, A. K., Kyzas, G. Z., & Katsoyiannis, I. A. (2024). An Update on Agricultural Wastes Used as Natural Adsorbents or Coagulants in Single or Combined Systems for the Removal of Dyes from Wastewater. Water, Air, & Soil Pollution, 235(3), 178. https://doi.org/10.1007/s11270-024-06979-9
Visan, A. I., & Negut, I. (2025). Environmental and Wastewater Treatment Applications of Stimulus-Responsive Hydrogels. Gels, 11(1), 72. https://doi.org/10.3390/gels11010072
Zavarzina, A. G., Danchenko, N. N., Demin, V. V, Artemyeva, Z. S., & Kogut, B. M. (2021). Humic Substances: Hypotheses and Reality (a Review). Eurasian Soil Science, 54(12), 1826–1854. https://doi.org/10.1134/S1064229321120164
Zhou, Y., Lu, J., Zhou, Y., & Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: A review. Environmental Pollution, 252(Part A), 352–365. https://doi.org/10.1016/j.envpol.2019.05.072
Zhu, H., Chen, S., & Luo, Y. (2023). Adsorption mechanisms of hydrogels for heavy metal and organic dyes removal: A short review. Journal of Agriculture and Food Research, 12, 100552. https://doi.org/10.1016/j.jafr.2023.100552
License
Copyright (c) 2025 Raudhatul Fadhilah, Doddy Irawan, Tuti Kurniati

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






