Vol. 11 No. 8 (2025): August
Open Access
Peer Reviewed

Synthesis and Characterization of Cellulose-Based Hydrogel from Durian Rind for Peat Water Purification

Authors

Raudhatul Fadhilah , Doddy Irawan , Tuti Kurniati

DOI:

10.29303/jppipa.v11i8.11514

Published:

2025-08-31

Downloads

Abstract

Peat water in Indonesia, abundant in swamp regions, is acidic and rich in humic substances and Fe²⁺ ions, making it unsuitable for direct use. This study explores a sustainable approach to treating peat water using hydrogel synthesized from durian rind (Durio zibethinus), an agricultural waste rich in cellulose. Cellulose was extracted via alkali and bleaching treatment, then crosslinked with chitosan in a NaOH/urea solvent system to form a biodegradable, porous hydrogel. The hydrogel exhibited a swelling ratio of 857% and a gel content of 98.23%, indicating high hydrophilicity and network integrity. Adsorption experiments demonstrated removal efficiencies of 98.96% for methylene blue and 25% for Fe²⁺. The high dye removal at low concentrations suggests strong interaction between hydrogel functional groups (–OH, –NH₂) and organic molecules, while Fe²⁺ removal was attributed to electrostatic interaction and potential chelation. Adsorption followed pseudo-second-order kinetics, indicating chemisorption as the rate-limiting step. These results suggest that durian rind hydrogel is a promising low-cost material for organic and inorganic pollutant removal in acidic water systems. This study highlights the potential of agro-waste valorization in developing eco-friendly materials for water purification.

Keywords:

Adsorption Durian rind Hydrogel Peat water Water treatment

References

Akhtar, M. S., Ali, S., & Zaman, W. (2024). Innovative Adsorbents for Pollutant Removal: Exploring the Latest Research and Applications. Molecules, 29(18), 4317. https://doi.org/10.3390/molecules29184317

Alaoui, C. H., Réthoré, G., Weiss, P., & Fatimi, A. (2023). Sustainable Biomass Lignin-Based Hydrogels: A Review on Properties, Formulation, and Biomedical Applications. International Journal of Molecular Sciences, 24(17), 13493. https://doi.org/10.3390/ijms241713493

Aranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Heras Caballero, A., & Acosta, N. (2021). Chitosan: An Overview of Its Properties and Applications. Polymers, 13(19), 3256. https://doi.org/10.3390/polym13193256

Astuti, D., Awang, N., Othman, M. S. Bin, Kamaludin, N. F. B., Meng, C. K., & Mutalazimah, M. (2023). Analysis of Heavy Metals Concentration in Textile Wastewater in Batik Industry Center. Jurnal Penelitian Pendidikan IPA, 9(3), 1176–1181. https://doi.org/10.29303/jppipa.v9i3.3085

Bakshi, M. I., Nazir, S., Restu, W. K., Rajamanickam, R., Selvasembian, R., Hua, L. S., Antov, P., Yadav, K. K., Abbas, M., Farobie, O., & Fatriasari, W. (2025). Recent advances in lignin from forest residue for hydrogel application. Biomass Conversion and Biorefinery, 15(8), 11475–11491. https://doi.org/10.1007/s13399-024-05973-9

Barus, D. A., Humaidi, S., Ginting, R. T., & Sitepu, J. (2022). Enhanced adsorption performance of chitosan/cellulose nanofiber isolated from durian peel waste/graphene oxide nanocomposite hydrogels. Environmental Nanotechnology, Monitoring & Management, 17, 100650. https://doi.org/10.1016/j.enmm.2022.100650

Chelu, M., Musuc, A. M., Popa, M., & Calderon Moreno, J. M. (2023). Chitosan Hydrogels for Water Purification Applications. Gels, 9(8), 664. https://doi.org/10.3390/gels9080664

Darban, Z., Shahabuddin, S., Gaur, R., Ahmad, I., & Sridewi, N. (2022). Hydrogel-Based Adsorbent Material for the Effective Removal of Heavy Metals from Wastewater: A Comprehensive Review. Gels, 8(5), 263. https://doi.org/10.3390/gels8050263

Das, A., Ghosh, S., & Pramanik, N. (2024). Chitosan biopolymer and its composites: Processing, properties and applications- A comprehensive review. Hybrid Advances, 6, 100265. https://doi.org/10.1016/j.hybadv.2024.100265

Du, Y., Zheng, Y., Liu, H., Zhao, S., Wang, X., & Yang, L. (2025). Moisture Harvesting by the Structure Regulation of Hygroscopic Hydrogel for Energy and Water Sustainability. Advanced Electronic Materials. https://doi.org/10.1002/aelm.202400802

Dutta, S., Gupta, B., Srivastava, S. K., & Gupta, A. K. (2021). Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Materials Advances, 2(14), 4497–4531. https://doi.org/10.1039/D1MA00354B

Edo, G. I., Yousif, E., & Al-Mashhadani, M. H. (2024). Chitosan: An overview of biological activities, derivatives, properties, and current advancements in biomedical applications. Carbohydrate Research, 542, 109199. https://doi.org/10.1016/j.carres.2024.109199

Ekoputri, S. F., Rahmatunnissa, A., Nulfaidah, F., Ratnasari, Y., Djaeni, M., & Sari, D. A. (2023). Pengolahan Air Limbah dengan Metode Koagulasi Flokulasi pada Industri Kimia. Jurnal Serambi Engineering, 9(1), 7781–7787. https://doi.org/10.32672/jse.v9i1.715

Fransiska, G., Sari, A., & Yolanda, D. (2024). Krisis Air Menangani Penyediaan Air Bersih Di Dunia Yang Semakin Kekurangan Sumber Daya. Jurnal Ilmiah Research Student, 1(5), 334–341. https://doi.org/10.61722/jirs.v1i5.1373

Geng, Z., Lin, Y., Yu, X., Shen, Q., Ma, L., Li, Z., Pan, N., & Wang, X. (2012). Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide–Fe3O4 nanoparticles as an easily regenerative adsorbent. Journal of Materials Chemistry, 22(8), 3527. https://doi.org/10.1039/c2jm15544c

George, G., Ealias, A. M., & Saravanakumar, M. P. (2024). Advancements in textile dye removal: a critical review of layered double hydroxides and clay minerals as efficient adsorbents. Environmental Science and Pollution Research, 31(9), 12748–12779. https://doi.org/10.1007/s11356-024-32021-w

Gonçalves, J. O., Strieder, M. M., Silva, L. F. O., dos Reis, G. S., & Dotto, G. L. (2024). Advanced technologies in water treatment: Chitosan and its modifications as effective agents in the adsorption of contaminants. International Journal of Biological Macromolecules, 270, 132307. https://doi.org/10.1016/j.ijbiomac.2024.132307

Guan, W., Zhao, Y., Lei, C., Wang, Y., Wu, K., & Yu, G. (2025). Molecularly Functionalized Biomass Hydrogels for Sustainable Atmospheric Water Harvesting. Advanced Materials, 37(22). https://doi.org/10.1002/adma.202420319

Haskis, P., Ioannidis, I., Mpeza, P., Giannopoulos, G., Barouchas, P., Selvasembian, R., Pashalidis, I., & Anastopoulos, I. (2024). Agricultural Biomass/Waste-Derived Adsorbents for the Abatement of Dye Pollutants in (Waste)Water. In A. Núñez-Delgado (Ed.), Planet Earth: Scientific Proposals to Solve Urgent Issues (pp. 161–183). Springer International Publishing. https://doi.org/10.1007/978-3-031-53208-5_8

Hong, F., Qiu, P., Wang, Y., Ren, P., Liu, J., Zhao, J., & Gou, D. (2024). Chitosan-based hydrogels: From preparation to applications, a review. Food Chemistry: X, 21, 101095. https://doi.org/10.1016/j.fochx.2023.101095

Islam, M. A., Morton, D. W., Johnson, B. B., & Angove, M. J. (2020). Adsorption of humic and fulvic acids onto a range of adsorbents in aqueous systems, and their effect on the adsorption of other species: A review. Separation and Purification Technology, 247, 116949. https://doi.org/10.1016/j.seppur.2020.116949

Jelita, J., Saragih, S. W., & Irham, W. H. (2024). BC-g-PAA: Characterization and Establishment of the IPN Hydrogel. Jurnal Penelitian Pendidikan IPA, 10(5), 2537–2544. https://doi.org/10.29303/jppipa.v10i5.7007

Jiménez-Gómez, C. P., & Cecilia, J. A. (2020). Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules, 25(17), 3981. https://doi.org/10.3390/molecules25173981

Kainth, S., Sharma, P., & Pandey, O. P. (2024). Green sorbents from agricultural wastes: A review of sustainable adsorption materials. Applied Surface Science Advances, 19, 100562. https://doi.org/10.1016/j.apsadv.2023.100562

Kalsum, L., Hasan, A., Hasan, J., & Sari, S. R. (2024). The Effect of Chicken Bones Powder Adsorbent Mass and its Contact Time on Reducing Color Concentration in Peat Water Treatment. Jurnal Penelitian Pendidikan IPA, 10(9), 7179–7185. https://doi.org/10.29303/jppipa.v10i9.4848

Mondal, A. K., Uddin, M. T., Sujan, S. M. A., Tang, Z., Alemu, D., Begum, H. A., Li, J., Huang, F., & Ni, Y. (2023). Preparation of lignin-based hydrogels, their properties and applications. International Journal of Biological Macromolecules, 245, 125580. https://doi.org/10.1016/j.ijbiomac.2023.125580

Oktavia, S., Rohmah, S., & Novi, C. (2024). Application of Chitosan from Litopenaeus vannamei and Baglog Waste from Pleurotus ostreatus for Decolorizing Batik Wastewater. Jurnal Penelitian Pendidikan IPA, 10(2), 638–647. https://doi.org/10.29303/jppipa.v10i2.5859

Pakdel, P. M., & Peighambardoust, S. J. (2018). Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydrate Polymers, 201, 264–279. https://doi.org/10.1016/j.carbpol.2018.08.070

Qadafi, M., Wulan, D. R., Notodarmojo, S., & Zevi, Y. (2023). Characteristics and treatment methods for peat water as clean water sources: A mini review. Water Cycle, 4, 60–69. https://doi.org/10.1016/j.watcyc.2023.02.005

Rico-García, D., Ruiz-Rubio, L., Pérez-Alvarez, L., Hernández-Olmos, S. L., Guerrero-Ramírez, G. L., & Vilas-Vilela, J. L. (2020). Lignin-Based Hydrogels: Synthesis and Applications. Polymers, 12(1), 81. https://doi.org/10.3390/polym12010081

Saiyad, M., Shah, N., Joshipura, M., Dwivedi, A., & Pillai, S. (2024). Chitosan and its derivatives in wastewater treatment application. Materials Today: Proceedings, 99, 190–194. https://doi.org/10.1016/j.matpr.2023.10.157

Saragih, S. W., Irham, W. H., Yosephine, I. O., Ferza, M., Yulia, B., & Fadhilah, A. (2025). Characteristics of Chitosan from Black Soldier Fly Pupa Shells as a Crosslinking Agent in the Manufacture of Slow-Release Fertilizer Hydrogels. Jurnal Penelitian Pendidikan IPA, 11(1), 558–566. https://doi.org/10.29303/jppipa.v11i1.9692

Sarah, F. (2018). Pembuatan Arang Aktif Dari Limbah Ampas Tebu Sebagai Adsorben Ion Fe2+ Dan Co2+. Jurnal Penelitian Pendidikan IPA, 4(2). https://doi.org/10.29303/jppipa.v4i2.110

Satyam, S., & Patra, S. (2024). Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review. Heliyon, 10(9), e29573. https://doi.org/10.1016/j.heliyon.2024.e29573

Sen, T. K. (2023). Agricultural Solid Wastes Based Adsorbent Materials in the Remediation of Heavy Metal Ions from Water and Wastewater by Adsorption: A Review. Molecules, 28(14), 5575. https://doi.org/10.3390/molecules28145575

Susanto, C., Halim, S., Rusip, G., Aurelia, N., & Susanto, C. (2024). Effectiveness of Acemannan Hydrogel Administration at Concentrations of 25 %, 50 %, 75 % Against Decrease in the Number of Macrophages in Periodontitis Rats with Diabetes Mellitus. Jurnal Penelitian Pendidikan, 10(24), 2186–2193. https://doi.org/10.29303/jppipa.v10i4.7077

Tawakkal, I. S. M. A., Talib, R. A., Abdan, K., & Ling, C. N. (2012). Mechanical And Physical Properties Of Kenaf-Derived Cellulose (KDC)-Filled Polylactic Acid (PLA) Composites. BioResources, 7(2), 6652–6662. https://doi.org/10.15376/biores.7.2.1643-1655

Tsoutsa, E. K., Tolkou, A. K., Kyzas, G. Z., & Katsoyiannis, I. A. (2024). An Update on Agricultural Wastes Used as Natural Adsorbents or Coagulants in Single or Combined Systems for the Removal of Dyes from Wastewater. Water, Air, & Soil Pollution, 235(3), 178. https://doi.org/10.1007/s11270-024-06979-9

Visan, A. I., & Negut, I. (2025). Environmental and Wastewater Treatment Applications of Stimulus-Responsive Hydrogels. Gels, 11(1), 72. https://doi.org/10.3390/gels11010072

Zavarzina, A. G., Danchenko, N. N., Demin, V. V, Artemyeva, Z. S., & Kogut, B. M. (2021). Humic Substances: Hypotheses and Reality (a Review). Eurasian Soil Science, 54(12), 1826–1854. https://doi.org/10.1134/S1064229321120164

Zhou, Y., Lu, J., Zhou, Y., & Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: A review. Environmental Pollution, 252(Part A), 352–365. https://doi.org/10.1016/j.envpol.2019.05.072

Zhu, H., Chen, S., & Luo, Y. (2023). Adsorption mechanisms of hydrogels for heavy metal and organic dyes removal: A short review. Journal of Agriculture and Food Research, 12, 100552. https://doi.org/10.1016/j.jafr.2023.100552

Author Biographies

Raudhatul Fadhilah, Universitas Muhammadiyah Pontianak

Author Origin : Indonesia

Doddy Irawan, Universitas Muhammadiyah Pontianak

Author Origin : Indonesia

Tuti Kurniati, Universitas Muhammadiyah Pontianak

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Fadhilah, R., Irawan, D., & Kurniati, T. (2025). Synthesis and Characterization of Cellulose-Based Hydrogel from Durian Rind for Peat Water Purification. Jurnal Penelitian Pendidikan IPA, 11(8), 1–8. https://doi.org/10.29303/jppipa.v11i8.11514