Implementation of Cache Memory Technology in Improving the Performance of Modern Computing Systems
DOI:
10.29303/jppipa.v11i6.11545Published:
2025-06-25Issue:
Vol. 11 No. 6 (2025): JuneKeywords:
Cache architecture, Cache memory, Cache replacement algorithms, Hierarchy cache, Prefetching technologyReview
Downloads
How to Cite
Downloads
Metrics
Abstract
The gap between increased processor speed and access to the main memory wall is a significant obstacle in the optimization of modern computing systems, where today's applications require processing large data with real-time responses. This study aims to analyze the effectiveness of the implementation of cache memory technology in improving the performance of modern computing systems, focusing on: 1) identification of key parameters that affect the effectiveness of cache on various workloads, 2) evaluation of adaptive cache replacement algorithms, 3) analysis of performance trade-offs with energy efficiency and security, and 4) formulation of optimal cache architecture recommendations. The research method uses a qualitative approach through a comprehensive literature study of 2020-2024 publications from the academic databases of IEEE Xplore, ACM Digital Library, Scopus, ScienceDirect, and SINTA with thematic content analysis and comparative evaluation of various cache technology implementations. The results showed that: the multi-level caching architecture increased system throughput by an average of 37.5%; adaptive algorithms such as RRIP increased hit rate by 23.7% compared to conventional LRU; SRAM/STT-MRAM hybrid technology saves up to 44.3% energy with minimal performance overhead; and the proposed integrated framework resulted in a 34.8% performance increase with a 27.5% reduction in energy consumption. Further research is recommended to implement and experimentally test the proposed framework on various computing platforms, develop more adaptive machine learning-based cache replacement algorithms, and explore the integration of cache technology with neuromorphic computing architectures.
References
Agustin, W. D., Maulana, A. D., Wirta, D., & Aribowo, D. (2023). Studi Perbandingan Antara Memori DRAM dan Memori SRAM Dalam Sistem Keamanan Komputer. Jurnal Teknik Mesin, Industri, Elektro Dan Informatika, 2(4), 01–10. Retrieved from https://ejurnal.politeknikpratama.ac.id/index.php/jtmei/article/view/2747
Alam, M. S. U. (2020). Generating Cache-Based Flush + Reload Side Channel Attack and Prevention. https://doi.org/10.13140/RG.2.2.17480.62729
Alfian, S. Y. (2006). Langkah Nyata Menghargai Kebhinekaan Di Ruang. Jurnal Sejarah, Budaya, Dan Pengajarannya, 11(2). Retrieved from http://journal2.um.ac.id/index.php/sejarah-dan-budaya/article/view/2266/1357
Aurangzeb, S., Bin Rais, R. N., Aleem, M., Islam, M. A., & Iqbal, M. A. (2021). On the classification of Microsoft-Windows ransomware using hardware profile. PeerJ Computer Science, 7, 1–24. https://doi.org/10.7717/peerj-cs.361
Chen, Y., Xie, Y., Song, L., Chen, F., & Tang, T. (2020). A Survey of Accelerator Architectures for Deep Neural Networks. Engineering, 6(3), 264–274. https://doi.org/10.1016/j.eng.2020.01.007
Dave, H. V., & Kotak, N. A. (2023). Critical analysis of cache memory performance concerning miss rate and power consumption. International Journal of Embedded Systems, 15(6). https://doi.org/10.1504/IJES.2022.129810
Fakhry, D., Abdelsalam, M., El-Kharashi, M. W., & Safar, M. (2023). A review on computational storage devices and near memory computing for high performance applications. Memories - Materials, Devices, Circuits and Systems, 4(April), 100051. https://doi.org/10.1016/j.memori.2023.100051
Fitroh, I. (2025). Antara Artificial Intelligence (AI) DAN Moral: Relevansi Pendidikan Karakter Dalam Pembelajaran DI. Jurnal Review Pendidikan Dan Pengajaran (JRPP), 8(2007), 1837–1843. Retrieved from https://journal.universitaspahlawan.ac.id/index.php/jrpp/article/download/41783/26623/139770
Hemmati, A., Zarei, M., & Souri, A. (2023). UAV-based Internet of Vehicles: A systematic literature review. Intelligent Systems with Applications, 18(March), 200226. https://doi.org/10.1016/j.iswa.2023.200226
Jaleel, A., Theobald, K. B., Steely, S. C., & Emer, J. (2010). High performance cache replacement using re-reference interval prediction (RRIP). In ACM SIGARCH Computer Architecture News (Vol. 38, Issue 3). https://doi.org/10.1145/1816038.1815971
Jang, H., An, B. S., Kulkarni, N., Yum, K. H., & Kim, E. J. (2012). A Hybrid Buffer Design with STT-MRAM for On-Chip Interconnects. 2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip, 193–200. https://doi.org/10.1109/NOCS.2012.30
Krishna, K. (2025). Advancements in cache management: a review of machine learning innovations for enhanced performance and security. Frontiers in Artificial Intelligence, 8. https://doi.org/10.3389/frai.2025.1441250
Meena, J. S., Sze, S. M., Chand, U., & Tseng, T. Y. (2014). Overview of emerging nonvolatile memory technologies. Nanoscale Research Letters, 9(1), 1–33. https://doi.org/10.1186/1556-276X-9-526
Navarro, O., Yudi, J., Hoffmann, J., Hernandez, H. G. M., & Hübner, M. (2020). A machine learning methodology for cache memory design based on dynamic instructions. ACM Transactions on Embedded Computing Systems, 19(2). https://doi.org/10.1145/3376920
Pappas, C., Moschos, T., Alexoudi, T., Vagionas, C., & Pleros, N. (2023). Caching With Light: A 16-bit Capacity Optical Cache Memory Prototype. IEEE Journal of Selected Topics in Quantum Electronics, 29(2). https://doi.org/10.1109/JSTQE.2023.3247032
Parker-Wood, A., Strong, C., Miller, E., & Long, D. (2020). Security Aware Partitioning for Efficient File System Search. IEEE Symp. Massive Storage Systems and Technologies. https://doi.org/10.1109/MSST.2010.5496990
Pasaribu, S. R. (2020). Evaluasi Tata Kelola Teknologi Informasi menggunakan Framework COBIT 5 pada Sekretariat Presiden (Vol. 9, Issue 4). Repository.Unej.Ac.Id.
Roihan, A., Sunarya, P. A., & Rafika, A. S. (2020). Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper. IJCIT (Indonesian Journal on Computer and Information Technology), 5(1), 75–82. https://doi.org/10.31294/ijcit.v5i1.7951
Ruan, B., Huang, H., Wu, S., & Jin, H. (2016). A Performance Study of Containers in Cloud Environment (Vol. 10065, pp. 343–356). https://doi.org/10.1007/978-3-319-49178-3_27
Salim, M. (2024). Mursalim E-Book Internet of Things IoT. Yayasan Tri Edukasi Ilmiah.
Singh, G., Chelini, L., Corda, S., Awan, A. J., Stuijk, S., Jordans, R., Corporaal, H., & Boonstra, A. J. (2019). Near-memory computing: Past, present, and future. Microprocessors and Microsystems, 71, 1–16. https://doi.org/10.1016/j.micpro.2019.102868
Sonia, Alsharef, A., Jain, P., Arora, M., Zahra, S. R., & Gupta, G. (2021). Cache memory: An analysis on performance issues. In Proceedings of the 2021 8th International Conference on Computing for Sustainable Global Development, INDIACom 2021. https://doi.org/10.1109/INDIACom51348.2021.00033
Sugiyono, P. D. (2022). Metode Penelitian Kualitatif Dan Kuantitatif. CV Alfabeta.
Sukmawati, E., Adhicandra, I., & Sucahyo, N. (2022). Information System Design of Online-Based Technology News Forum. International Journal Of Artificial Intelligence Research, 1(2). https://doi.org/10.29099/ijair.v6i1.2.593
Sulaiman, S., Shamsuddin, S. M., Abraham, A., & Sulaiman, S. (2011). Intelligent web caching using machine learning methods. Neural Network World, 21(5), 429–452. https://doi.org/10.14311/NNW.2011.21.025
Suwandita, A. D., Pijasari, V., Prasetyowati, A. E. D., & Anshori, M. I. (2023). Analisis Data Human Resources Untuk Pengambilan Keputusan: Penggunaan Analisis Data Dan Artificial Intelligence (AI) Dalam Meramalkan Tren Sumber Daya Manusia, Pengelolaan Talenta, Dan Rentensi Karyawan. Manajemen Kreatif Jurnal, 1(4), 97–111. https://doi.org/10.55606/makreju.v1i4.2161
Wiraguna, S., Purwanto, L. M. F., & Rianto Widjaja, R. (2024). Metode Penelitian Kualitatif di Era Transformasi Digital Qualitative Research Methods in the Era of Digital Transformation. Arsitekta : Jurnal Arsitektur Dan Kota Berkelanjutan, 6(01), 46–60. https://doi.org/10.47970/arsitekta.v6i01.524
Yuliandevie, I. N., & Dewi, M. P. (2023). Implementasi Hybrid Working pada Organisasi Pemerintah dalam Perspektif Agile Human Resource. Jurnal Pengabdian Kepada Masyarakat Nusantara, 4(4), 5009–5014. https://doi.org/10.55338/jpkmn.v4i4.2000
Author Biographies
M Sahyudi, Universitas Teknokrat indonesia
Amarudin, Universitas Teknokrat indonesia
License
Copyright (c) 2025 M Sahyudi, Amarudin

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).