Application of GARCH and Value-at-Risk (VaR) Models in Stochastic Analysis of LQ45 Index Volatility
DOI:
10.29303/jppipa.v11i8.11670Published:
2025-08-25Downloads
Abstract
Stock market volatility is a crucial factor in investment decision-making. This study analyzes the volatility of the LQ45 Index, one of Indonesia's major stock indices, using the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model and assesses risk through the Value-at-Risk (VaR) method. The data consists of daily closing prices of the LQ45 index from 2020 to 2024. A GARCH(1,1) model is used to estimate the conditional variance dynamically, and VaR is calculated at the 95% confidence level. The results show that the GARCH(1,1) model effectively captures volatility dynamics, with the highest daily VaR recorded at 3.21% during the first quarter of 2020. The novelty of this study lies in the explicit integration of the mathematical formulation of GARCH with VaR estimation in the context of the Indonesian stock market, particularly the LQ45 index, which is rarely addressed in pure mathematical finance literature. This approach contributes to the development of stochastic financial models and provides a quantitative framework for investment risk management.
Keywords:
Stock volatility LQ45 Index GARCH(1,1) Value-at-Risk Risk ManagementReferences
Amri, I. F., Puspitasari, L., Priambodo, D., Azzahrani, R. D., & Haris, M. Al. (2024). Estimasi Risiko Pada Saham PT. Gojek Tokopedia Tbk dan Expected Shortfall Menggunakan ARIMA-GARCH Model. Jambura Journal of Probability and Statistics, 5(2), 36–41. https://doi.org/10.37905/JJPS.V5I2.22552 DOI: https://doi.org/10.37905/jjps.v5i2.22552
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1 DOI: https://doi.org/10.1016/0304-4076(86)90063-1
Bougerol, P., & Picard, N. (1992). Stationarity of Garch processes and of some nonnegative time series. Journal of Econometrics, 52(1–2), 115–127. https://doi.org/10.1016/0304-4076(92)90067-2 DOI: https://doi.org/10.1016/0304-4076(92)90067-2
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Journal Of Time Series Analysis Book Review Time Series Analysis: Forecasting And Control, 5th Edition, by. J. Time. Ser. Anal, 37, 709–711. https://www.wiley.com/en-us/Time+Series+Analysis%3A+Forecasting+and+Control%2C+5th+Edition-p-9781118675021 DOI: https://doi.org/10.1111/jtsa.12194
Darmanto, Darti, I., Astutik, S., Nurjannah, Lee, M. H., Damayanti, R. H. P. Y., & Irsandy, D. (2025). Strengthening Syariah Financial Markets With Garch-Based Stock Price Forecasting And Var-Risk Assessment. Barekeng: Jurnal Ilmu Matematika Dan Terapan, 19(2), 1217–1236. https://doi.org/10.30598/BAREKENGVOL19ISS2PP1217-1236 DOI: https://doi.org/10.30598/barekengvol19iss2pp1217-1236
Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series With a Unit Root. Journal of the American Statistical Association, 74(366), 427. https://doi.org/10.2307/2286348 DOI: https://doi.org/10.2307/2286348
Embrechts, P., Klüppelberg, C., & Mikosch, T. (1997). Modelling Extremal Events. Modelling Extremal Events. https://doi.org/10.1007/978-3-642-33483-2 DOI: https://doi.org/10.1007/978-3-642-33483-2
Endri, E., Aipama, W., Razak, A., Sari, L., & Septiano, R. (2021). Stock price volatility during the COVID-19 pandemic: The GARCH model. Investment Management and Financial Innovations, 18(4), 12–20. https://doi.org/10.21511/IMFI.18(4).2021.02 DOI: https://doi.org/10.21511/imfi.18(4).2021.02
Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), 987. https://doi.org/10.2307/1912773 DOI: https://doi.org/10.2307/1912773
Tabot Enow, S. (2025). Heteroskedastic behaviour of stock prices: Evidence from international financial markets. International Journal of Research in Business and Social Science (2147- 4478), 14(5), 275–279. https://doi.org/10.20525/IJRBS.V14I5.4086 DOI: https://doi.org/10.20525/ijrbs.v14i5.4086
Faydian, P., Hasana, A. E., Irfan, M., Taqiyyuddin, T. A., Statistika, P., Padjadjaran, U., Raya, J., Sumedang, B., 21, K. M., Sumedang, K., & Barat, J. (2021). Penerapan Model ARCH/GARCH untuk Memprediksi Harga Saham Perusahaan Tokai Carbon. Jurnal Sains Matematika Dan Statistika, 7(2), 50–61. https://doi.org/10.24014/JSMS.V7I2.13138 DOI: https://doi.org/10.24014/jsms.v7i2.13138
Francq, Christian., & Zakoian, J.-Michel. (2019). GARCH models : structure, statistical inference and financial applications. John Wiley & Sons. DOI: https://doi.org/10.1002/9781119313472
Gujarati, D. N., & Porter, D. C. . (2010). Basic econometrics. McGrqw-Hill. https://books.google.com/books/about/Basic_Econometrics.html?hl=id&id=6l1CPgAACAAJ
Hall, P., & Yao, Q. (2003). Inference in ARCH and GARCH models with heavy-tailed errors. Econometrica, 71(1), 285–317. https://doi.org/10.1111/1468-0262.00396 DOI: https://doi.org/10.1111/1468-0262.00396
Hasan, I. K., Djakaria, I., Novaleda, D., & Karim, A. (2020). Perbandingan Model ARCH (1) dan GARCH (1,1) Ditinjau dari Perilaku Kurtosis dan Fungsi Autokorelasi. Jambura Journal of Mathematics, 2(2), 97–107. https://doi.org/10.34312/JJOM.V2I2.4642 DOI: https://doi.org/10.34312/jjom.v2i2.4642
Hasnanda, S., & Ratna, R. (2020). The Generalized Autoregressive Conditional Heteroscedasticity Model Application on Inflation and Consumers Price Index in Aceh. Journal of Malikussaleh Public Economics, 3(1), 8–16. https://doi.org/10.29103/JOMPE.V3I1.3191 DOI: https://doi.org/10.29103/jmpe.v3i1.3191
Hull, J. C. . (2015). Risk Management and Financial Institutions : Risk Management and Financial Institutions (4th Edition). John Wiley & Sons, Incorporated.
Jeon, C.-S. (2013). Value-at-Risk Forecasting using Realized Volatility Models and GARCH-type Models. Journal of Derivatives and Quantitative Studies: 선물연구, 21(2), 135–167. https://doi.org/10.1108/JDQS-02-2013-B0001 DOI: https://doi.org/10.1108/JDQS-02-2013-B0001
Jorion, P. (2007). Value at Risk : The New Benchmark For Managing Financial Risk (3rd ed.). McGraw-Hill.
Ling, S., & McAleer, M. (2002). Stationarity and the existence of moments of a family of GARCH processes. Journal of Econometrics, 106(1), 109–117. https://doi.org/10.1016/S0304-4076(01)00090-2 DOI: https://doi.org/10.1016/S0304-4076(01)00090-2
Muzio Ponziani, R. (2022). The Modeling the returns volatility of Indonesian stock indices: The case of SRI-KEHATI and LQ45. Jurnal Ekonomi Modernisasi, 18(1), 13–21. https://doi.org/10.21067/JEM.V18I1.6411 DOI: https://doi.org/10.21067/jem.v18i1.6411
Nasrudin, M., Setyowati, E., & Wara, S. S. M. (2024). Application of VAR-GARCH for Modeling the Causal Relationship of Stock Prices in the Mining Sub-sector. Jurnal Varian, 8(1), 89–96. https://doi.org/10.30812/VARIAN.V8I1.4239 DOI: https://doi.org/10.30812/varian.v8i1.4239
Nurwan, Nu. (2019). A model arch(1) dan garch(1,1) pada peramalan harga saham Pt. Cowell development Tbk. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 13(1), 009–018. https://doi.org/10.30598/BAREKENGVOL13ISS1PP009-018AR676 DOI: https://doi.org/10.30598/barekengvol13iss1pp009-018ar676
Peter J. Brockwell, & Richard A. Davis. (2016). Introduction to Time Series and Forecasting. https://books.google.co.id/books/about/Introduction_to_Time_Series_and_Forecast.html?id=P-bSBwAAQBAJ&redir_esc=y DOI: https://doi.org/10.1007/978-3-319-29854-2
PT Bursa Efek Indonesia. (2024). https://www.idx.co.id/id (accessed May 3, 2025).
Bui Quang, P., Klein, T., Nam Nguyen, H., & Walther, T. (2018). Value-at-Risk for South-East Asian Stock Markets: Stochastic Volatility vs. GARCH. Journal of Risk and Financial Management 2018, Vol. 11, Page 18, 11(2), 18. https://doi.org/10.3390/JRFM11020018 DOI: https://doi.org/10.3390/jrfm11020018
Sari, L. K., Achsani, N. A., & Sartono, B. (2017). Pemodelan Volatilitas Return Saham: Studi Kasus Pasar Saham Asia Modelling Volatility of Return Stock Index: Evidence from Asian Countries. Jurnal Ekonomi Dan Pembangunan Indonesia, 18(1), 35–52. DOI: https://doi.org/10.21002/jepi.v18i1.717
Tsay, R. S. (2010). Analysis of financial time series. Analysis of Financial Time Series, 1–677. https://doi.org/10.1002/9780470644560 DOI: https://doi.org/10.1002/9780470644560
Ugurlu, E., Thalassinos, E., Muratoglu, Y., Ugurlu, E., Thalassinos, E., & Muratoglu, Y. (2014). Modeling Volatility in the Stock Markets using GARCH Models: European Emerging Economies and Turkey. International Journal in Economics and Business Administration, II(3), 72–87. DOI: https://doi.org/10.35808/ijeba/49
Yahoo Finance. (2024). LQ45 Index Historical Data - Yahoo Finance. https://finance.yahoo.com/quote/%5EJKLQ45/history/ (accessed May 2, 2025).
License
Copyright (c) 2025 Nissa Rahma Putri Andini, Radhiah, Taufiq Iskandar, Rini Oktavia

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






