Characterization of Subsurface Structure Using Gravity Data Inversion in the Ombilin Basin, West Sumatra
DOI:
10.29303/jppipa.v11i8.11762Published:
2025-08-25Downloads
Abstract
The Ombilin Basin in West Sumatra is one of the oldest intermontane basins in Indonesia that has significant geological potential, especially in relation to coal content and possible petroleum systems. This study uses a three-dimensional gravity inversion method to model the distribution of subsurface density from a depth of 0 to 6000 meters. The purpose of this study is to examine the subsurface geological modeling in the Ombilin Basin and to be a reference in exploration geophysical studies in other basins in Indonesia that have similar characteristics. Corrected regional gravity data are used as input in the inversion process to reconstruct the relative density model of rocks. The inversion results show a low-density zone (Δg between -0.1995 to -0.0099 gr/cc) in the central and southwest parts of the basin associated with sedimentary deposits such as sandstone, shale, and coal. At depths of more than 4000 meters, a high-density zone is identified that reflects the presence of basement rocks or possible magmatic intrusions. This density distribution strengthens the understanding of the basin geometry and potential hydrocarbon traps. This study shows that the gravity inversion method is an effective and economical approach for subsurface geological interpretation, especially in areas with limited exploration data.
Keywords:
Basement Geophysical methods Gravity inversion Ombilin Basin Subsurface densityReferences
Abdelfattah, M. D. (2024). An automatic new approach to gravity anomaly’s profile separation, inversion and interpretation, using an infinite horizontal slab model. NRIAG Journal of Astronomy and Geophysics, 13(1), 118–140. https://doi.org/10.1080/20909977.2024.2368959 DOI: https://doi.org/10.1080/20909977.2024.2368959
Adrianda, R. S., Sahara, R., & Gusti, U. K. (2025). The geodiversity site of Geopark Ranah Minang Silokek, Indonesia: Promoting geo-education and geotourism through geosite assessment. International Journal of Geoheritage and Parks, 13(2), 239–249. https://doi.org/10.1016/j.ijgeop.2024.11.012 DOI: https://doi.org/10.1016/j.ijgeop.2024.11.012
Ariska, M., Suhadi, Supari, Irfan, M., & Iskandar, I. (2024). Spatio-Temporal Variations of Indonesian Rainfall and Their Links to Indo-Pacific Modes. Atmosphere, 15(9), 1036. https://doi.org/10.3390/atmos15091036 DOI: https://doi.org/10.3390/atmos15091036
Balkan, E., & Tün, M. (2023). Use of Land Gravity Data in Small Areas to Support Structural Geology, a Case Study in Eskişehir Basin, Turkey. Applied Sciences, 13(4), 2286. https://doi.org/10.3390/app13042286 DOI: https://doi.org/10.3390/app13042286
Chen, G., Liu, T., Sun, J., Cheng, Q., Sahoo, B., Zhang, Z., & Zhang, H. (2015). Gravity method for investigating the geological structures associated with W–Sn polymetallic deposits in the Nanling Range, China. Journal of Applied Geophysics, 120, 14–25. https://doi.org/10.1016/j.jappgeo.2015.06.001 DOI: https://doi.org/10.1016/j.jappgeo.2015.06.001
Chen, J., Cazenave, A., Dahle, C., Llovel, W., Panet, I., Pfeffer, J., & Moreira, L. (2022). Applications and Challenges of GRACE and GRACE Follow-On Satellite Gravimetry. Surveys in Geophysics, 43(1), 305–345. https://doi.org/10.1007/s10712-021-09685-x DOI: https://doi.org/10.1007/s10712-021-09685-x
De Lima, D. P. D., Carmelo, A. C., Soares, J. E. P., De Lima, M. V. A. G., & Fuck, R. A. (2023). Gravity inversion for crustal thickness investigation of the continental and oceanic crusts of Brazil incorporating a lithosphere thermal gravity anomaly correction. Tectonophysics, 846, 229663. https://doi.org/10.1016/j.tecto.2022.229663 DOI: https://doi.org/10.1016/j.tecto.2022.229663
Deng, Q., Ye, M., Hao, W., Xiao, C., Zhong, Z., Qiu, D., Zhang, W., Zheng, C., Wang, Y., Yan, J., Barriot, J.-P., Xiao, Z., & Li, F. (2025). Crustal thickness and lithospheric properties of Mercury constrained by gravity data. Geo-Spatial Information Science, 1–25. https://doi.org/10.1080/10095020.2025.2511975 DOI: https://doi.org/10.1080/10095020.2025.2511975
Ekwok, S. E., Achadu, O.-I. M., Akpan, A. E., Eldosouky, A. M., Ufuafuonye, C. H., Abdelrahman, K., & Gómez-Ortiz, D. (2022). Depth Estimation of Sedimentary Sections and Basement Rocks in the Bornu Basin, Northeast Nigeria Using High-Resolution Airborne Magnetic Data. Minerals, 12(3), 285. https://doi.org/10.3390/min12030285 DOI: https://doi.org/10.3390/min12030285
Eshagh, M. (2021). The Earth’s Gravity Field Role in Geodesy and Large-Scale Geophysics. In Geodetic Sciences—Theory, Applications and Recent Developments. IntechOpen. https://doi.org/10.5772/intechopen.97459 DOI: https://doi.org/10.5772/intechopen.97459
Eze, O. E., Okiwelu, A. A., Ekwok, S. E., Abdelrahman, K., Alzahrani, H., Ben, U. C., Ibrahim, A., Akpa, C., Andráš, P., Ugar, S. I., & Eldosouky, A. M. (2024). Delineation of deep-seated crustal structures from magnetic data in the southeastern part of the Niger Delta basin, Nigeria. Frontiers in Earth Science, 12, 1439199. https://doi.org/10.3389/feart.2024.1439199 DOI: https://doi.org/10.3389/feart.2024.1439199
Fosso Menkem, E., Ngounou Ngatcha, B., Ngong Ngia, R., Fuanya, C., & Ekodeck, G. E. (2024). Tectonic and sedimentary evolution of the Northern Cameroon Cretaceous rift basins: A study of the Babouri-Figuil and Mayo Oulo-Lere basins. Geosystems and Geoenvironment, 3(3), 100291. https://doi.org/10.1016/j.geogeo.2024.100291 DOI: https://doi.org/10.1016/j.geogeo.2024.100291
Harms, J. (2015). Terrestrial Gravity Fluctuations. Living Reviews in Relativity, 18(1), 3. https://doi.org/10.1007/lrr-2015-3 DOI: https://doi.org/10.1007/lrr-2015-3
Hastuti, E. W. D. (2017). Geochemical study of pyroclastic rocks in Maninjau Lake, West Sumatra. IOP Conference Series: Earth and Environmental Science, 71, 012034. https://doi.org/10.1088/1755-1315/71/1/012034 DOI: https://doi.org/10.1088/1755-1315/71/1/012034
Idarwati, Setiawan, B., Jati, S. N., Rochmana, Y. Z., Mayasari, E. D., & Rendana, M. (2025). Schematic formation of boudine granite and microfold phyllite of Gilas River: Implications for Triassic to Tertiary tectonics of Garba Hill, South Ogan Komering Ulu Regency, South Sumatra Province. Geosystems and Geoenvironment, 4(3), 100414. https://doi.org/10.1016/j.geogeo.2025.100414 DOI: https://doi.org/10.1016/j.geogeo.2025.100414
Incerti, A., Rinaldini, V., Santandrea, M., Carloni, C., & Mazzotti, C. (2025). Effect of Density and Number of Layers of Fiber Sheets and End Anchors on the Flexural Capacity of SRG-Strengthened RC Beams. Buildings, 15(7), 1005. https://doi.org/10.3390/buildings15071005 DOI: https://doi.org/10.3390/buildings15071005
Issatayeva, F., Abetov, A., Umirova, G., Abdullina, A., Mustafin, Z., & Karpenko, O. (2025). The Roles of Transcrustal Magma- and Fluid-Conducting Faults in the Formation of Mineral Deposits. Geosciences, 15(6), 190. https://doi.org/10.3390/geosciences15060190 DOI: https://doi.org/10.3390/geosciences15060190
Izvoltova, J., Bacova, D., Chromcak, J., & Hodas, S. (2022). Preprocessing of Gravity Data. Computation, 10(6), 82. https://doi.org/10.3390/computation10060082 DOI: https://doi.org/10.3390/computation10060082
Kaban, M. K., Gvishiani, A., Sidorov, R., Oshchenko, A., & Krasnoperov, R. I. (2021). Structure and Density of Sedimentary Basins in the Southern Part of the East-European Platform and Surrounding Area. Applied Sciences, 11(2), 512. https://doi.org/10.3390/app11020512 DOI: https://doi.org/10.3390/app11020512
Karaiskos, D., Apostolopoulos, G., & Orfanos, C. (2024). Gravity Survey for Mineral Exploration in Gerolekas Bauxite Mining Site in Greece. Mining, 5(1), 3. https://doi.org/10.3390/mining5010003 DOI: https://doi.org/10.3390/mining5010003
Li, P., Huang, G.-C. D., & Savvaidis, A. (2021). Seismic features of the Permian Basin Region from receiver function analysis. Tectonophysics, 801, 228718. https://doi.org/10.1016/j.tecto.2021.228718 DOI: https://doi.org/10.1016/j.tecto.2021.228718
Li, W. (2025). Perspective Chapter: Research on Earthquake Disasters Based on Physical Constraints of Computational Gravimetry. In Earth Sciences (Vol. 5). IntechOpen. https://doi.org/10.5772/intechopen.1008859 DOI: https://doi.org/10.5772/intechopen.1008859
Li, Y., & Oldenburg, D. W. (1998). 3-D inversion of gravity data. Geophysics, 63(1), 109–119. https://doi.org/10.1190/1.1444302 DOI: https://doi.org/10.1190/1.1444302
Ligi, M., Cuffaro, M., Muccini, F., & Bonatti, E. (2022). Generation and evolution of the oceanic lithosphere in the North Atlantic. La Rivista Del Nuovo Cimento, 45(9), 587–659. https://doi.org/10.1007/s40766-022-00035-0 DOI: https://doi.org/10.1007/s40766-022-00035-0
Martins, G. S., Mohriak, W. U., & Destro, N. (2019). Synrift evaporite deposition and structural characterization of the onshore Alagoas subbasin. Interpretation, 7(4), SH19–SH31. https://doi.org/10.1190/INT-2018-0207.1 DOI: https://doi.org/10.1190/INT-2018-0207.1
Masror, S. Z., Ntarmouchant, A., Elabouyi, M., Bento Dos Santos, T. M., Manar, A., Smaili, M. H., Mali, B., Ntarmouchant, N., El Mahrad, B., Driouch, Y., Cachapuz, P., Catita, T., & Jeddi, E. M. (2025). Subsurface structure of a foreland basin from analysis of gravity and aeromagnetic data: Revealing the basement structure of Gharb Basin, NW Morocco. Tectonophysics, 897, 230622. https://doi.org/10.1016/j.tecto.2025.230622 DOI: https://doi.org/10.1016/j.tecto.2025.230622
Nicholson, S. E., Funk, C., & Fink, A. H. (2018). Rainfall over the African continent from the 19th through the 21st century. Global and Planetary Change, 165, 114–127. https://doi.org/10.1016/j.gloplacha.2017.12.014 DOI: https://doi.org/10.1016/j.gloplacha.2017.12.014
Omolaiye, G. E., Oniyangi, A. K., Issa, T. A., & Adam, S. B. (2024). Subsurface investigation for pre-foundation study utilizing integrated geophysical and geotechnical methods, UNILORIN campus. Discover Geoscience, 2(1), 101. https://doi.org/10.1007/s44288-024-00103-4 DOI: https://doi.org/10.1007/s44288-024-00103-4
Pohan, A. F., Sismanto, S., Nurcahya, B. E., Lewerissa, R., Koesuma, S., Saputro, S. P., Amukti, R., Saputra, H., & Adhi, M. A. (2023). Utilization and modeling of satellite gravity data for geohazard assessment in the Yogyakarta area of Java Island, Indonesia. Kuwait Journal of Science, 50(4), 499–511. https://doi.org/10.1016/j.kjs.2023.05.016 DOI: https://doi.org/10.1016/j.kjs.2023.05.016
Ramdani, D., Pahlevi, A., & Muthia Harahap, R. (2024). Optimal Global Gravity Field Model for Calculation of local Gravity and Geoid in Indonesia. IOP Conference Series: Earth and Environmental Science, 1418(1), 012021. https://doi.org/10.1088/1755-1315/1418/1/012021 DOI: https://doi.org/10.1088/1755-1315/1418/1/012021
Robertson, A. H. F., Parlak, O., Kinnaird, T. C., Taslı, K., & Dumitrica, P. (2020). Cambrian-Eocene pre-rift, pulsed rift, passive margin and emplacement processes along the northern margin of the Southern Neotethys: Evidence from the Antalya Complex in the Alanya Window (S Turkey). Journal of Asian Earth Sciences: X, 3, 100026. https://doi.org/10.1016/j.jaesx.2020.100026 DOI: https://doi.org/10.1016/j.jaesx.2020.100026
Setiahadiwibowo, A. P., Sismanto, Hilyah, A., Anggraeni, L. A., Purwanto, Moh. S., & Sari, C. F. K. (2025). Comparison of Upward Continuation and Moving Average Filters for Satellite Gravity Data in Probolinggo Fault Case Study. IOP Conference Series: Earth and Environmental Science, 1486(1), 012021. https://doi.org/10.1088/1755-1315/1486/1/012021 DOI: https://doi.org/10.1088/1755-1315/1486/1/012021
Sun, M., Yi, H., Zhao, Z., Feng, C., Zhong, G., & Tu, G. (2025). The Sedimentary Distribution and Evolution of Middle Jurassic Reefs and Carbonate Platform on the Middle Low Uplift in the Chaoshan Depression, Northern South China Sea. Journal of Marine Science and Engineering, 13(6), 1025. https://doi.org/10.3390/jmse13061025 DOI: https://doi.org/10.3390/jmse13061025
Thanh Pham, L., Anh Nguyen, D., Eldosouky, A. M., Abdelrahman, K., Van Vu, T., Al-Otaibi, N., Ibrahim, E., & Kharbish, S. (2021). Subsurface structural mapping from high-resolution gravity data using advanced processing methods. Journal of King Saud University - Science, 33(5), 101488. https://doi.org/10.1016/j.jksus.2021.101488 DOI: https://doi.org/10.1016/j.jksus.2021.101488
Tillmans, F., Gawthorpe, R. L., Jackson, C. A. ‐L., & Rotevatn, A. (2021). Syn‐rift sediment gravity flow deposition on a Late Jurassic fault‐terraced slope, northern North Sea. Basin Research, 33(3), 1844–1879. https://doi.org/10.1111/bre.12538 DOI: https://doi.org/10.1111/bre.12538
Wang, J., Yuan, Y., Chen, J., Zhang, W., Zhang, J., Liang, J., & Zhang, Y. (2023). Geological Conditions and Suitability Evaluation for CO2 Geological Storage in Deep Saline Aquifers of the Beibu Gulf Basin (South China). Energies, 16(5), 2360. https://doi.org/10.3390/en16052360 DOI: https://doi.org/10.3390/en16052360
Yan, J., Lü, Q., Luo, F., Cheng, S., Zhang, K., Zhang, Y., Xu, Y., Zhang, C., Liu, Z., Ruan, S., & Wang, X. (2021). A gravity and magnetic study of lithospheric architecture and structures of South China with implications for the distribution of plutons and mineral systems of the main metallogenic belts. Journal of Asian Earth Sciences, 221, 104938. https://doi.org/10.1016/j.jseaes.2021.104938 DOI: https://doi.org/10.1016/j.jseaes.2021.104938
Yasmin, H. S., Pirzada, S. J., Sahroni, T. R., Soekarno, H., Pranoto, B., Puspa, A. D., & Alfisah. (2024). 2D Geological Structure Identification in Mount Ciremai Geothermal Area using the GGMplus Data. IOP Conference Series: Earth and Environmental Science, 1344(1), 012017. https://doi.org/10.1088/1755-1315/1344/1/012017 DOI: https://doi.org/10.1088/1755-1315/1344/1/012017
Yuan, J., Luo, L., Zheng, Y., Yu, S., Shi, J., Wang, J., & Shen, J. (2022). Analysis of The Working Performance of Large Curvature Prestressed Concrete Box Girder Bridges. Materials, 15(15), 5414. https://doi.org/10.3390/ma15155414 DOI: https://doi.org/10.3390/ma15155414
Zonneveld, J.-P., Barreda, V. D., Zaim, Y., Aswan, Rizal, Y., Hascaryo, A. T., Ciochon, R. L., Head, J., Murray, A., Smith, T., Wilf, P., & Bloch, J. I. (2025). Depositional framework of the Sangkarewang and Sawahlunto Formations, Ombilin Basin, West Sumatra, Indonesia. Journal of Asian Earth Sciences, 287, 106611. https://doi.org/10.1016/j.jseaes.2025.106611 DOI: https://doi.org/10.1016/j.jseaes.2025.106611
License
Copyright (c) 2025 Fitria, A. Haris, Rinaldo

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






