Vol. 11 No. 8 (2025): August
Open Access
Peer Reviewed

Natural Filtration to Improve the Quality Product from Domestic Wastewater Treatment Plant Using Heliconia psittacorum and Napier Grass (Pennisetum purpureum)

Authors

DOI:

10.29303/jppipa.v11i8.11792

Published:

2025-08-25

Downloads

Abstract

As a developing wastewater treatment system, constructed wetlands have increasingly been implemented in several regions due to their high purification efficiency and relatively low operational costs. This study aims to improve the quality of treated water from domestic Wastewater Treatment Plants (WWTP) through natural filtration methods based on sandy soil media that contain 70% soil and 30% sand and planted with Heliconia psittacorum and Napier grass (Pennisetum purpureum). The natural filtration such as constructed wetland were applied in open tanks, with varying retention times 2, 4, 6, 8 and 10 days to test treatment effectiveness, the wastewater quality was analyzed based on parameters including COD, BOD, TSS, ammonia, phosphate, nitrate, and pH. The results showed a significant reduction in pollutant concentrations, with the highest removal efficiency reaching for BOD 86.41%, COD at 86.54%, nitrate at 98.92%, phosphate at 97.86%, at 99.84% and TSS at 86.39% resulting in treated water that meets the domestic wastewater quality standards according to Government Regulation No. 22 of 2021 for class 3., enhancing nutrient uptake and supporting microbial activity within the filtration media. This method offers a cost-effective, environmentally friendly alternative for domestic wastewater treatment, suitable for application in areas with limited land availability and aiming for sustainable water management.

Keywords:

Class 3 water quality Domestic wastewater Natural filtration

References

Aguirre, J. S., & Koutsoumanis, K. P. (2016). Towards Lag Phase of Microbial Populations at Growth-Limiting Conditions: The Role of the Variability in the Growth Limits of Individual Cells. International Journal of Food Microbiology, 224, 1–6. https://doi.org/10.1016/j.ijfoodmicro.2016.01.021 DOI: https://doi.org/10.1016/j.ijfoodmicro.2016.01.021

Amalia, R. N., Devy, S. D., Kurniawan, A. S., Hasanah, N., Salsabila, E. D., Ratnawati, D. A. A. Fadil, F. M., Syarif, N. A., & Aturdin, G. A. (2022). Potensi Limbah Cair Tahu sebagai Pupuk Organik Cair di RT. 31 Kelurahan Lempake Kota Samarinda. ABDIKU: Jurnal Pengabdian Masyarakat Universitas Mulawarman, 1(1), 36–41. https://doi.org/10.32522/abdiku.v1i1.38 DOI: https://doi.org/10.32522/abdiku.v1i1.38

Amanah, M. S., Susila, A. D., & Krisantini, K. (2025). Fertilizer Efficiency of Ammonium (NH4+) and Nitrate (NO3-) by Fertigation in Shallot Production. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 53(1), 23-34. https://doi.org/10.24831/jai.v53i1.58409 DOI: https://doi.org/10.24831/jai.v53i1.58409

Ameso, V. C., Essandoh, H. M. K., Donkor, E. A., & Nwude, M. O. (2023). Comparative Analysis of Greywater Pollutant Removal Efficiency with Horizontal Free Water Surface Flow Wetland with Other Wetland Technologies. Heliyon, 9(7), e17637. https://doi.org/10.1016/j.heliyon.2023.e17637 DOI: https://doi.org/10.1016/j.heliyon.2023.e17637

Angelin, J., & Kavitha, M. (2020). Exopolysaccharides from Probiotic Bacteria and Their Health Potential. International Journal of Biological Macromolecules, 162, 853–865. https://doi.org/10.1016/j.ijbiomac.2020.06.190 DOI: https://doi.org/10.1016/j.ijbiomac.2020.06.190

Baharuddin, M. I., Aweng, E. R., Kutty, S. R. M., Roslan, S. N. M., & Hanaphi, R. M. (2021). Potential of a Combination of Heliconia psittacorum and Its Associated Bacteria for Phytoremediation. IOP Conference Series: Earth and Environmental Science, 842(1). https://doi.org/10.1088/1755-1315/842/1/012011 DOI: https://doi.org/10.1088/1755-1315/842/1/012011

Chen, J., Guo, F., Wu, F., & Bryan, B. A. (2023). Costs and Benefits of Constructed Wetlands for Meeting New Water Quality Standards from China’s Wastewater Treatment Plants. Resources, Conservation and Recycling, 199, 107248. https://doi.org/10.1016/j.resconrec.2023.107248 DOI: https://doi.org/10.1016/j.resconrec.2023.107248

Gómez-Merino, F. C., Trejo-Téllez, L. I., & Vidal-Morales, B. (2012). Heliconia psittacorum Responds to Variations of Nitrate/Ammonium Ratios under Hydroponic Conditions. Acta Horticulturae, 947, 261–268. https://doi.org/10.17660/actahortic.2012.947.33 DOI: https://doi.org/10.17660/ActaHortic.2012.947.33

Ihtiar, A., Ulfah, M., & Kaswinarni, F. (2024). Effectiveness of Water Bamboo as Phytoremediation Agent BOD and COD Leachate. Journal of Environmental and Science Education, 4(2). https://doi.org/10.15294/jese.v5i2.4438 DOI: https://doi.org/10.15294/jese.v5i2.4438

Ishtiaq, M., Akram, M., Tao, S., Belmaati, H., Siyech, M. H., Sievert, W., & Stefanakis, A. (2025). Two Years Monitoring and Optimization of a Large-Scale Constructed Wetland in the Red Sea Designed for 80,000 Inhabitants. Journal of Cleaner Production, 501(22), 145307. http://dx.doi.org/10.1016/j.jclepro.2025.145307 DOI: https://doi.org/10.1016/j.jclepro.2025.145307

Kadlec, R. H., & Wallace, S. D. (2009). Treatment Wetlands (2nd ed). CRC Press. DOI: https://doi.org/10.1201/9781420012514

Kementrian Lingkungan Hidup. (2021). Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia Nomor 5 Tahun 2021 Tentang Tata Cara Penerbitan Persetujuan Teknis Surat Kelayakan Operasional Bidang Pengendalian Pencemaran Lingkungan. Jakarta: Kementrian Lingkungan Hidup.

Klomjek, P. (2016). Swine Wastewater Treatment Using Vertical Subsurface Flow Constructed Wetland Planted with Napier Grass. Sustainable Environment Research, 26(5), 217–223. https://doi.org/10.1016/j.serj.2016.03.001 DOI: https://doi.org/10.1016/j.serj.2016.03.001

Krishnaswamy, U. R. (2025). Floating Treatment Wetland with Microbial Fuel Cell for Removing Pollutants, Energy Utilization, Recovery of Nutrients – Review on Sustainable Technology. Desalination and Water Treatment, 323(101264), 1-17. Retrieved from https://www.researchgate.net/publication/392465552 DOI: https://doi.org/10.1016/j.dwt.2025.101264

Levi, Y. (2009). Contraintes et enjeux dans l’évaluation et la gestion des risques sanitaires liés aux micropolluants émergents dans les eaux. Retrieved from https://www.academie-medecine.fr/contraintes-et-enjeux-dans-levaluation-et-la-gestion-des-risques-sanitaires-lies-aux-micropolluants-emergents-dans-les-eaux/ DOI: https://doi.org/10.1016/S0001-4079(19)32471-9

Miranda, S. (2020). Open-Access Efficiency of Horizontal Subsurface Flow-Constructed Wetlands Considering Different Support Materials and the Cultivation Positions of Plant Species. Rev. Ambient. Água, 15(2). https://doi.org/10.4136/ambi-agua.2476 DOI: https://doi.org/10.4136/ambi-agua.2476

Ncube, P., Pidou, M., Stephenson, T., Jefferson, B., & Jarvis, P. (2018). Consequences of pH Change on Wastewater Depth Filtration Using a Multimedia Filter. Water Research, 128, 111–119. https://doi.org/10.1016/j.watres.2017.10.040 DOI: https://doi.org/10.1016/j.watres.2017.10.040

Pérez, Y., Vargas, E., García-Cortés, D., Hernández, W., Checo, H., & Jáuregui-Haza, U. (2023). Efficiency and Effectiveness of Systems for the Treatment of Domestic Wastewater Based on Subsurface Flow Constructed Wetlands in Jarabacoa, Dominican Republic. Water Science and Engineering, xxx. https://doi.org/10.1016/j.wse.2023.08.004 DOI: https://doi.org/10.1016/j.wse.2023.08.004

Rezania, S., Kamyab, H., Rupani, P. F., Park, J., Nawrot, N., Wojciechowska, E., Yadav, K. K., Lotfi Ghahroud, M., Mohammadi, A. A., Thirugnana, S. T., Chelliapan, S., & Cabral-Pinto, M. M. S. (2021). Recent Advances on the Removal of Phosphorus in Aquatic Plant-Based Systems. Environmental Technology & Innovation, 24, 101933. https://doi.org/10.1016/j.eti.2021.101933 DOI: https://doi.org/10.1016/j.eti.2021.101933

Rudrappa, T., Biedrzycki, M. L., & Bais, H. P. (2008). Causes and Consequences of Plant-Associated Biofilms. FEMS Microbiology Ecology, 64(2), 153–166. https://doi.org/10.1111/j.1574-6941.2008.00465.x DOI: https://doi.org/10.1111/j.1574-6941.2008.00465.x

Siswandari, A. M., Iin, H., & Sukarsono, S. (2016). Fitoremediasi Phospat Limbah Cair Laundry Menggunakan Tanaman Melati Air (Echinodorus paleafolius) dan Bambu Air (Equisetum hyemale) sebagai Sumber Belajar Biologi. Jurnal Pendidikan Biologi Indonesia, 2(3), 222–230. Retrieved from https://share.google/Uw7HeZVPgsHSbrx25

Sulianto, A. A., Kurniati, E., & Hapsari, A. A. (2019). Perancangan Unit Filtrasi untuk Pengolahan Limbah Domestik Menggunakan Sistem Downflow. Jurnal Sumberdaya Alam dan Lingkungan, 6(3), 31–39. https://doi.org/10.21776/ub.jsal.2019.006.03.4 DOI: https://doi.org/10.21776/ub.jsal.2019.006.03.4

Viani, A. (2022). Efisiensi Penurunan Kadar Amonia dalam Limbah Domestik pada Sistem Constructed Wetland dengan Menggunakan Media Pasir, Zeolit, Batu Karang dan Tanaman Sereh (Cymbopogon Citratus) (Undergraduate Thesis). Retrieved from http://skripsi.undana.ac.id/index.php?p=show_detail&id=7028&keywords=

Vries, W. T. D., Avila, V. C. A., & Ghozali, A. (2025). Spatial Assessment of Wastewater Requirements for the New Capital City of Indonesia. Revue Internationale de Géomatique, 34(1), 125–149. https://doi.org/10.32604/rig.2025.057970 DOI: https://doi.org/10.32604/rig.2025.057970

Author Biographies

Aurum Azzahra, Universitas Diponegoro

Author Origin : Indonesia

Badrus Zaman, Universitas Diponegoro

Author Origin : Indonesia

Heru Susanto, Universitas Diponegoro

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Azzahra, A., Zaman, B., & Susanto, H. (2025). Natural Filtration to Improve the Quality Product from Domestic Wastewater Treatment Plant Using Heliconia psittacorum and Napier Grass (Pennisetum purpureum). Jurnal Penelitian Pendidikan IPA, 11(8), 1157–1166. https://doi.org/10.29303/jppipa.v11i8.11792