Vol. 11 No. 9 (2025): September
Open Access
Peer Reviewed

Palm Kernel Shell as a Source of Functional Biochar: A Review of Recent Scientific Progress

Authors

DOI:

10.29303/jppipa.v11i9.11849

Published:

2025-09-25

Downloads

Abstract

This report examined the research trends in production and application of biochar derived from palm kernel shells (PKS) over the past decade. A Systematic Literature Review (SLR) was conducted on 63 articles indexed in Scopus between 2015 and 2025, with bibliometric mapping performed using VOSviewer. From 2015, the number of publications on PKS biochar grew gradually, reaching a peak in 2020 and 2023.  Through the use of keyword co-occurrence mapping, four significant clusters of PKS biochar research were identified. These clusters primarily dealt with pyrolysis, activated carbon, biofuels, and biomass usage as main themes.  The term "biochar" has a critical function in connecting applications pertaining to agriculture, the environment, and energy, as seen by its core positioning and strong keyword connections across clusters.  Su Shiung Lam and Rock Keey Liew (Universiti Malaysia Terengganu) have the strongest collaboration link (strength 17), according to the VOSviewer study, which is supported by 6 documents and 640 citations.  Based on the number of publications, Malaysia is the leader in PKS biochar research with 33, followed by Thailand with 8 and Indonesia with 6. The findings of this study can serve as a useful reference for researchers and institutions looking to understand current trends, active contributors, and major themes in PKS biochar research.

Keywords:

Biochar Palm kernel shell Sustainable biomass

References

Abbas, K., Muizz Mohamed Ghazali, A., & Kooi Ong, S. (2019). The Effect of Particle Size of Palm Kernel Shell on the Mechanical Properties and Physical Properties of Filled Natural Rubber Vulcanizates. Materials Today: Proceedings, 19, 1599–1607. https://doi.org/10.1016/j.matpr.2019.11.188

Abidin, Z. Z., Mamauod, S. N. L., Romli, A. Z., Sarkawi, S. S., & Zainal, N. H. (2023). Synergistic Effect of Partial Replacement of Carbon Black by. Polymers, 15(4), 943. https://doi.org/10.3390/polym15040943

Anak Erison, A. E., Tan, Y. H., Mubarak, N. M., Kansedo, J., Khalid, M., Abdullah, M. O., & Ghasemi, M. (2022). Life cycle assessment of biodiesel production by using impregnated magnetic biochar derived from waste palm kernel shell. Environmental Research, 214(P4), 114149. https://doi.org/10.1016/j.envres.2022.114149

Andrio, D., Saputra, M. R., & Darmayanti, L. (2024). Utilization of Magnetic Biochar from Palm Shell as An Adsorbent for Removal of COD, Total Suspended Solid, Oil and Grease in Greywater. Jurnal Penelitian Pendidikan IPA, 10(3), 1195–1204. https://doi.org/10.29303/jppipa.v10i3.4597

Anyaoha, K. E., Sakrabani, R., Patchigolla, K., & Mouazen, A. M. (2018). Critical evaluation of oil palm fresh fruit bunch solid wastes as soil amendments: Prospects and challenges. Resources, Conservation and Recycling, 136(April), 399–409. https://doi.org/10.1016/j.resconrec.2018.04.022

Bazargan, A., Rough, S. L., & McKay, G. (2014). Compaction of palm kernel shell biochars for application as solid fuel. Biomass and Bioenergy, 70, 489–497. https://doi.org/10.1016/j.biombioe.2014.08.015

Choi, G. G., Oh, S. J., Lee, S. J., & Kim, J. S. (2015). Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells. Bioresource Technology, 178, 99–107. https://doi.org/10.1016/j.biortech.2014.08.053

Dechapanya, W., & Khamwichit, A. (2023). Biosorption of aqueous Pb(II) by H3PO4-activated biochar prepared from palm kernel shells (PKS). Heliyon, 9(7), e17250. https://doi.org/10.1016/j.heliyon.2023.e17250

Gan, Y., Li, D. duo, Robinson, N., & Liu, J. ping. (2022). Practical guidance on bibliometric analysis and mapping knowledge domains methodology – A summary. European Journal of Integrative Medicine, 56(October), 102203. https://doi.org/10.1016/j.eujim.2022.102203

Garcia-Nunez, J. A., Ramirez-Contreras, N. E., Rodriguez, D. T., Silva-Lora, E., Frear, C. S., Stockle, C., & Garcia-Perez, M. (2016). Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents. Resources, Conservation and Recycling, 110, 99–114. https://doi.org/10.1016/j.resconrec.2016.03.022

Hariry, A., Mardawati, E., Iswanto, A. H., Karliati, T., Zaini, L. H., & Lubis, M. A. R. (2025). Nanocellulose-Based Adhesives for Sustainable Wood-Polymer Composites: Recent Advancement and Future Perspective. Journal of Renewable Materials, (February), 1–10. https://doi.org/10.32604/jrm.2025.058359

Heredia Salgado, M. A., Coba S, J. A., & Tarelho, L. A. C. (2020). Simultaneous production of biochar and thermal energy using palm oil residual biomass as feedstock in an auto-thermal prototype reactor. Journal of Cleaner Production, 266, 121804. https://doi.org/10.1016/j.jclepro.2020.121804

Hosseinzadeh-Bandbafha, H., Tan, Y. H., Kansedo, J., Mubarak, N. M., Liew, R. K., Yek, P. N. Y., … Tabatabaei, M. (2023). Assessing biodiesel production using palm kernel shell-derived sulfonated magnetic biochar from the life cycle assessment perspective. Energy, 282(April), 128758. https://doi.org/10.1016/j.energy.2023.128758

Karunanayake, L., Etampawala, T., de Silva, D. J., Bandara, J., Rajapaksha, A. U., & Vithanage, M. (2025). Role and potential of biochar as a sustainable alternative reinforcing filler to carbon black in rubber composites. Biochar, 7(1). https://doi.org/10.1007/s42773-025-00429-3

Keey, R., Min, L., Chong, Y., & Uyi, O. (2018). Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell : a comparative study of chemical versus physical activation. Research on Chemical Intermediates, 44(6), 3849–3865. https://doi.org/10.1007/s11164-018-3388-y

Kosasih, I., Wu, K.-T., Sipayung, H. N., & Chen, C.-T. (2022). Biochar application in Calliandra calothyrsus plantation management. Agroforestry Systems, 96(1), 115–127. https://doi.org/10.1007/s10457-021-00703-w

Lee, X. J., Lee, L. Y., Gan, S., Thangalazhy-Gopakumar, S., & Ng, H. K. (2017). Biochar potential evaluation of palm oil wastes through slow pyrolysis: Thermochemical characterization and pyrolytic kinetic studies. Bioresource Technology, 236, 155–163. https://doi.org/10.1016/j.biortech.2017.03.105

Liew, R. K., Chai, C., Yek, P. N. Y., Phang, X. Y., Chong, M. Y., Nam, W. L., … Lam, S. S. (2019). Innovative production of highly porous carbon for industrial effluent remediation via microwave vacuum pyrolysis plus sodium-potassium hydroxide mixture activation. Journal of Cleaner Production, 208(2019), 1436–1445. https://doi.org/10.1016/j.jclepro.2018.10.214

Mohd Hasan, M. H., Bachmann, R. T., Loh, S. K., Manroshan, S., & Ong, S. K. (2019). Effect of Pyrolysis Temperature and Time on Properties of Palm Kernel Shell-Based Biochar. IOP Conference Series: Materials Science and Engineering, 548(1). https://doi.org/10.1088/1757-899X/548/1/012020

Nam, W. L., Phang, X. Y., Su, M. H., Liew, R. K., Ma, N. L., Rosli, M. H. N. Bin, & Lam, S. S. (2018). Production of bio-fertilizer from microwave vacuum pyrolysis of palm kernel shell for cultivation of Oyster mushroom (Pleurotus ostreatus). Science of the Total Environment, 624, 9–16. https://doi.org/10.1016/j.scitotenv.2017.12.108

Nazarudin, N., Ulyarti, U., Alfernando, O., Galih, I., Susilawati, S., & Doyan, A. (2018). The Effect Of Temperature On The Performance Of Activated Carbon Over Catalytic Cracking Of Crude Palm Oil. Jurnal Penelitian Pendidikan IPA, 5(1). https://doi.org/10.29303/jppipa.v5i1.175

Nuradila, D., Karim, G. W. A. W. A., & Alias, A. B. (2017). Palm Kernel Shell-Derived Biochar and Catalyst for Biodiesel Production. Malaysian Journal of Analytical Science, 21(1), 197–203. https://doi.org/10.17576/mjas-2017-2101-23

Promraksa, A., & Rakmak, N. (2020). Biochar production from palm oil mill residues and application of the biochar to adsorb carbon dioxide. Heliyon, 6(5). https://doi.org/10.1016/j.heliyon.2020.e04019

Rashid, U., Soltani, S., Choong, T. S. Y., Nehdi, I. A., Ahmad, J., & Ngamcharussrivichai, C. (2019). Palm biochar-based sulphated zirconium (Zr-AC-HSO3) catalyst for methyl ester production from palm fatty acid distillate. Catalysts, 9(12). https://doi.org/10.3390/catal9121029

Sait, H. H., Kanthasamy, R., & Ayodele, B. V. (2025). Hybrid Analysis of Biochar Production from Pyrolysis of Agriculture Waste Using Statistical and Artificial Intelligent-Based Modeling Techniques. Agronomy, 15(1). https://doi.org/10.3390/agronomy15010181

Salgado, M. A. H., Tarelho, L. A. C., & Matos, A. (2020). Analysis of combined biochar and torrefied biomass fuel production as alternative for residual biomass valorization generated in small-scale palm oil mills. Waste and Biomass Valorization, 11(1), 343–356. https://doi.org/10.1007/s12649-018-0467-7

Simarani, K., Azlan Halmi, M. F., & Abdullah, R. (2018). Short-term effects of biochar amendment on soil microbial community in humid tropics. Archives of Agronomy and Soil Science, 64(13), 1847–1860. https://doi.org/10.1080/03650340.2018.1464149

Sulok, K. M. T., Ahmed, O. H., Khew, C. Y., Zehnder, J. A. M., Jalloh, M. B., Musah, A. A., & Abdu, A. (2021). Chemical and biological characteristics of organic amendments produced from selected agro-wastes with potential for sustaining soil health: A laboratory assessment. Sustainability (Switzerland), 13(9), 1–15. https://doi.org/10.3390/su13094919

Sunnu, A. K., Adu-Poku, K. A., & Ayetor, G. K. (2023). Production and characterization of charred briquettes from various agricultural waste. Combustion Science and Technology, 195(5), 1000–1021. https://doi.org/10.1080/00102202.2021.1977803

Wahi, R., Abdul Aziz, S. M., Hamdan, S., & Ngaini, Z. (2016). Biochar production from agricultural wastes via low-temperature microwave carbonization. RFM 2015 - 2015 IEEE International RF and Microwave Conference, 244–247. https://doi.org/10.1109/RFM.2015.7587754

Wan Mahari, W. A., Nam, W. L., Sonne, C., Peng, W., Phang, X. Y., Liew, R. K., & Lam, S. S. (2020). Applying microwave vacuum pyrolysis to design moisture retention and pH neutralizing palm kernel shell biochar for mushroom production. Bioresource Technology, 312(April), 123572. https://doi.org/10.1016/j.biortech.2020.123572

Author Biographies

Margareta N. Cahyanti, Universitas Kristen Satya Wacana

Author Origin : Indonesia

Dewi K.A. Kusumahastuti, Universitas Kristen Satya Wacana

Author Origin : Indonesia

Sri Hartini, Universitas Kristen Satya Wacana

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Cahyanti, M. N., Kusumahastuti, D. K., & Hartini, S. (2025). Palm Kernel Shell as a Source of Functional Biochar: A Review of Recent Scientific Progress. Jurnal Penelitian Pendidikan IPA, 11(9), 10–16. https://doi.org/10.29303/jppipa.v11i9.11849