Advanced Chicken Breed Identification Using Transfer Learning Techniques with the VGG16 Convolutional Neural Network Architecture
DOI:
10.29303/jppipa.v11i7.11870Published:
2025-07-25Downloads
Abstract
This study proposes a deep learning-based classification system to identify chicken breeds from image data. A dataset of 2,400 labeled images representing twelve distinct chicken breeds was collected and divided into training, validation, and testing sets. The system employs transfer learning by integrating the Mobile VGG16 convolutional neural network as the feature extraction backbone. The extracted features were then passed through custom classification layers to differentiate among the breeds. The model was trained using 1,800 images, validated with 300 images, and evaluated on a separate test set of 300 images. During testing, the model achieved an accuracy of 81% and a categorical cross-entropy loss of 0.378. These results indicate that the model can effectively recognize subtle visual distinctions between similar-looking chicken breeds. The system demonstrates practical potential for applications in poultry farming, biodiversity documentation, and automated livestock management. The findings confirm that deep convolutional neural networks, particularly VGG16 in a transfer learning setup, are capable of performing fine-grained classification tasks in real-world scenarios. The proposed method provides a reliable and scalable solution for automatic chicken breed identification based on image input.
Keywords:
Chicken Convolutional neural network Deep learning Fine-tuning VGG16References
Adhinata, F. D., Tanjung, N. A. F., Widayat, W., Pasfica, G. R., & Satura, F. R. (2021). Comparative Study of VGG16 and MobileNetV2 for Masked Face Recognition. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, 7(2), 230. https://doi.org/10.26555/jiteki.v7i2.20758
Al-Gaashani, M. S. A. M., Xu, W., & Obsie, E. Y. (2025). MobileNetV2-Based Deep Learning Architecture with Progressive Transfer Learning for Accurate Monkeypox Detection. Applied Soft Computing, 169, 112553. https://doi.org/10.1016/j.asoc.2024.112553
Azhmy, M. F., Suyar, A. S., & Setiamy, A. A. (2024). Digital HRM with Machine Learning Approach. Jurnal Penelitian Pendidikan IPA, 10(SpecialIssue), 18–23. https://doi.org/10.29303/jppipa.v10iSpecialIssue.7213
Beltran, T. D., Villao, R. J., Chuquimarca, L. E., Vintimilla, B. X., & Velastin, S. A. (2025). Fruit Deformity Classification Through Single-Input and Multi-input Architectures Based on CNN Models Using Real and Synthetic Images. In Hernández-García, R., Barrientos, R. J., & Velastin, S.A. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2024. Lecture Notes in Computer Science, vol 15368. Springer, Cham. https://doi.org/10.1007/978-3-031-76607-7_4
Brianorman, Y., & Utami, D. (2024). Comparative Analysis of CNN Architectures for SIBI Image Classification. JUITA: Jurnal Informatika, 12(1), 61. https://doi.org/10.30595/juita.v12i1.20608
Chihaoui, M., Dhibi, N., & Ferchichi, A. (2024). Optimization of Convolutional Neural Network and Visual Geometry Group-16 Using Genetic Algorithms for Pneumonia Detection. Frontiers in Medicine, 11, 1498403. https://doi.org/10.3389/fmed.2024.1498403
Chuquimarca, L., Vintimilla, B., & Velastin, S. (2024). Classifying Healthy and Defective Fruits with a Multi-Input Architecture and CNN Models. 2024 14th International Conference on Pattern Recognition Systems (ICPRS), 1–7. https://doi.org/10.1109/ICPRS62101.2024.10677833
Dihan, F. J., Murad, S. A., Muzahid, A. J. M., Uddin, K. M. A., Alenazi, M. J. F., Bairagi, A. K., & Biswas, S. (2024). MpoxSLDNet: A Novel CNN Model for Detecting Monkeypox Lesions and Performance Comparison with Pre-trained Models. https://doi.org/10.48550/arXiv.1409.1556
Diharja, R., Fahlevi, M. R., Rahayu, E. S., & Handini, W. (2022). Prototype-Design of Soil Movement Detector Using IoT Hands-on Application. Jurnal Penelitian Pendidikan IPA, 8(4), 2245–2254. https://doi.org/10.29303/jppipa.v8i4.1709
Ecemiş, İ. N., & O.Ilhan, H. (2022). Domates Yapraklarında Hastalık Tespiti Için Önerilen Hafif Evrişimli Sinir Ağı Ile Önceden Eğitilmiş Ağların Performans Karşılaştırması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(2), 693–706. https://doi.org/10.17341/gazimmfd.1003730
Ekmekyapar, T., & Taşcı, B. (2023). Exemplar MobileNetV2-Based Artificial Intelligence for Robust and Accurate Diagnosis of Multiple Sclerosis. Diagnostics (Basel, Switzerland), 13(19). https://doi.org/10.3390/diagnostics13193030
Elsayed, O. R., ElKot, Y. G., ElRefaai, D. A., Abdelfattah, H. M., ElSayed, M., & Hamdy, A. (2023). Automated Identification and Classification of Teeth Fossils. 2023 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), 179–186. https://doi.org/10.1109/MIUCC58832.2023.10278368
Gao, W., Wang, D., & Huang, Y. (2023). Designing a Deep Learning-Driven Resource-Efficient Diagnostic System for Metastatic Breast Cancer: Reducing Long Delays of Clinical Diagnosis and Improving Patient Survival in Developing Countries. Cancer Informatics, 22. https://doi.org/10.1177/11769351231214446
Garg, T., Garg, M., Mahela, O. P., & Garg, A. R. (2020). Convolutional Neural Networks with Transfer Learning for Recognition of COVID-19: A Comparative Study of Different Approaches. AI, 1(4), 586–606. https://doi.org/10.3390/ai1040034
Hamim, M. A., Haque, A. U., Ray, K., & Hasan, M. S. (2023). Multiple Nail-Disease Classification Based on Machine Vision Using Transfer Learning Approach. 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–8. https://doi.org/10.1109/ICCCNT56998.2023.10306501
Hussain, M., Thaher, T., Almourad, M. B., & Mafarja, M. (2024). Optimizing VGG16 Deep Learning Model with Enhanced Hunger Games Search for Logo Classification. Scientific Reports, 14(1), 31759. https://doi.org/10.1038/s41598-024-82022-5
Imawati, I. A. P. F., Sudarma, M., Putra, I. K. G. D., Bayupati, I. P. A., & Jo, M. (2025). Training VGG16, MobileNetV1 and Simple CNN Models from Scratch for Balinese Inscription Recognition. Lontar Komputer: Jurnal Ilmiah Teknologi Informasi, 15(03), 149. https://doi.org/10.24843/LKJITI.2024.v15.i03.p01
Islami, F., Sumijan, S., & Defit, S. (2024). Customized Convolutional Neural Network for Glaucoma Detection in Retinal Fundus Images. Jurnal Penelitian Pendidikan IPA, 10(8), 4606–4613. https://doi.org/10.29303/jppipa.v10i8.7614
Jee, G., Gm, H., Gourisaria, M. K., Singh, V., Rautaray, S. S., & Pandey, M. (2023). Efficacy Determination of Various Base Networks in Single Shot Detector for Automatic Mask Localisation in a Post COVID Setup. Journal of Experimental & Theoretical Artificial Intelligence, 35(3), 345–364. https://doi.org/10.1080/0952813X.2021.1960638
Kaya, Y., & Gürsoy, E. (2023). Retracted Article: A MobileNet-Based CNN Model with a Novel Fine-Tuning Mechanism for COVID-19 Infection Detection. Soft Computing, 27(9), 5521–5535. https://doi.org/10.1007/s00500-022-07798-y
Kurniawan, M. A., Wijaya, S. K., & Hanifa, N. R. (2023). Convolutional Neural Network for Earthquake Ground Motion Prediction Model in Earthquake Early Warning System in West Java. Jurnal Penelitian Pendidikan IPA, 9(11), 1004–1010. https://doi.org/10.29303/jppipa.v9i11.3514
Kurniawan, M. B., & Utami, E. (2025). Performance Comparison of ResNet50, VGG16, and MobileNetV2 for Brain Tumor Classification on MRI Images. SISTEMASI, 14(2), 767. https://doi.org/10.32520/stmsi.v14i2.5054
Menaga, D., Deborah, S. L., & Makizhna, M. (2025). Deep Learning Models for Coral Reef Health Classification: MobileNetV2, VGG16 and ResNet (pp. 1241–1251). https://doi.org/10.2991/978-94-6463-718-2_103
Mirza, A. H., Halim, R. M. N., & Hasbiallah, M. J. (2025). Development of an Efficient 1D-CNN Model for Myocardial Infarction Classification Using 12-Lead ECG Signals. Jurnal Penelitian Pendidikan IPA, 11(3), 1167–1182. https://doi.org/10.29303/jppipa.v11i3.10238
Murinto, M., Rosyda, M., & Melany, M. (2023). Klasifikasi Jenis Biji Kopi Menggunakan Convolutional Neural Network dan Transfer Learning pada Model VGG16 dan MobileNetV2. JRST (Jurnal Riset Sains dan Teknologi), 7(2), 183. https://doi.org/10.30595/jrst.v7i2.16788
Muttaqin, R. Z., & Sudiana, D. (2025). Design of Realtime Web Application Firewall on Deep Learning-Based to Improve Web Application Security. Jurnal Penelitian Pendidikan IPA, 10(12), 11121–11129. https://doi.org/10.29303/jppipa.v10i12.8346
Noor, A. Z. M., Gernowo, R., & Nurhayati, O. D. (2023). Data Augmentation for Hoax Detection Through the Method of Convolutional Neural Network in Indonesian News. Jurnal Penelitian Pendidikan IPA, 9(7), 5078–5084. https://doi.org/10.29303/jppipa.v9i7.4214
Putri, S. A., Murinto, M., & Sunardi, S. (2025). Intelligent Monitoring of Smoking Prohibition in Public Spaces Using YOLOv8: Real-Time Detection and Telegram Notifications. Jurnal Penelitian Pendidikan IPA, 11(4), 601–610. https://doi.org/10.29303/jppipa.v11i4.10519
Ramadhani, A. N. M., Saraswati, G. W., Agung, R. T., & Santoso, H. A. (2023). Performance Comparison of Convolutional Neural Network and MobileNetV2 for Chili Diseases Classification. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 7(4), 940–946. https://doi.org/10.29207/resti.v7i4.5028
Sari, M. W., Sitorus, S. P., Rohani, R., & Pane, R. (2025). Implementation of Convolutional Neural Network (CNN) Method in Determining the Level of Ripeness of Mango Fruit Based on Image. Jurnal Penelitian Pendidikan IPA, 11(5), 419–428. https://doi.org/10.29303/jppipa.v11i5.11436
Srinivasu, P. N., SivaSai, J. G., Ijaz, M. F., Bhoi, A. K., Kim, W., & Kang, J. J. (2021). Classification of Skin Disease Using Deep Learning Neural Networks with MobileNet V2 and LSTM. Sensors, 21(8), 2852. https://doi.org/10.3390/s21082852
Supriyanto, E., Isnanto, R. R., & Purnomo, S. H. (2024). Developing Chicken Health Classification Model Using a Convolutional Neural Network and Support Vector Machine (CNN-SVM) Approach. Ingénierie Des Systèmes d Information, 29(6), 2525–2532. https://doi.org/10.18280/isi.290637
Wibowo, A., Hartanto, C. A., & Wirawan, P. W. (2020). Android Skin Cancer Detection and Classification Based on MobileNet v2 Model. International Journal of Advances in Intelligent Informatics, 6(2), 135. https://doi.org/10.26555/ijain.v6i2.492
Zaid, M. M. A., Mohammed, A. A., & Sumari, P. (2025). Remote Sensing Image Classification Using Convolutional Neural Network (CNN) and Transfer Learning Techniques. Journal of Computer Science, 21(3), 635–645. https://doi.org/10.3844/jcssp.2025.635.645
Zhong, J., Chen, J., & Mian, A. (2023). DualConv: Dual Convolutional Kernels for Lightweight Deep Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 34(11), 9528–9535. https://doi.org/10.1109/TNNLS.2022.3151138
Zulirfan, Z., & Yennita, Y. (2022). Feasibility Test of STEM at Home Prototype Kit as Science Project-Based Learning Media for Junior High School Students. Jurnal Penelitian Pendidikan IPA, 8(1), 57–66. https://doi.org/10.29303/jppipa.v8i1.1122
License
Copyright (c) 2025 Nagala Wangsa kencana, Rusydi Umar, Murinto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






