The Effect of Basal Medium on Callus Induction and Plant Regeneration in Anther Culture of Rice (Oryza sativa L.)
DOI:
10.29303/jppipa.v11i8.11884Published:
2025-08-25Downloads
Abstract
Anther culture is an effective tissue culture technique for rapidly producing doubled haploid (DH) plants, significantly shortening the breeding cycle by 2-3 years compared to conventional methods. This study aimed to evaluate the effects of callus induction basal medium (B5 Gamborg and N6 Chu) and subsequent plant regeneration in both Japonica and Indica rice genotypes. The experiment was conducted using a completely randomized design (CRD) with two treatment factors. The first factor was genotype (G), comprising Nipponbare (G1), RCKJ 05 (G2), RCKJ 10 (G3), RCKJ 15 (G4), RCKJ 25 (G5). The second factor was the basal medium (M), consisting of N6 Chu medium (M1) and B5 Gamborg medium (M2). Each treatment combination (genotype x medium) was replicated three times, with one Petri dish (containing 125 anthers) per replicate. Parameters observed included callus induction frequency (CIF), green plantlet regeneration (RGP), and albino plantlet regeneration (RAP). The results demonstrated that both genotype and the basal medium for callus induction significantly influenced callus induction frequency and green plantlet regeneration.
Keywords:
B5 Gamborg Callus Double haploid N6 Chu RiceReferences
Abdullah, R., Cocking, E., & Thompson, J. A. (1986). Efficient Plant Regeneration from Rice Protoplasts Through Somatic Embryogenesis. Nature Biotechnology, 4(12), 1087-1090. https://doi.org/10.1038/nbt1286-1087
Abe, T., & Futsuhara, Y. (1985). Efficient Plant Regeneration by Somatic Embryogenesis from Root Callus Tissues of Rice (Oryza sativa L.). Journal of Plant Physiology, 121(2), 111-118. https://doi.org/10.1016/S0176-1617(85)80035-3
Ahmad, F. I., Wagiran, A., Abd Samad, A., Rahmat, Z., & Sarmidi, M. R. (2016). Improvement of efficient in vitro regeneration potential of mature callus induced from Malaysian upland rice seed (Oryza sativa cv. Panderas). Saudi Journal of Biological Sciences, 23(1), S69-S77. https://doi.org/10.1016/j.sjbs.2015.10.022
Ali, J., Nicolas, K. L. C., Akther, S., Torabi, A., Ebadi, A. A., Marfori-Nazarea, C. M., & Mahender, A. (2021). Improved anther culture media for enhanced callus formation and plant regeneration in rice (Oryza sativa l.). Plants, 10(5), 1–16. https://doi.org/10.3390/plants10050839
Callcott, E. T., Santhakumar, A. B., Luo, J., & Blanchard, C. L. (2018). Therapeutic potential of rice-derived polyphenols on obesity-related oxidative stress and inflammation. Journal of Applied Biomedicine, 16(4), 255-262. https://doi.org/10.1016/j.jab.2018.03.001
Carsono, N., Lidiasari, D., Sari, S., & Wicaksana, N. (2022). Penggunaan Putresin Alami dan Sintetik untuk Induksi Kalus dan Regenerasi Kultur Anter Empat Genotipe Padi The Use of Natural and Synthetic Putrescine for Callus Induction and Regeneration of Anther Culture of Four Rice Genotypes. Jurnal Agrikultura, 2021(3), 312–318. https://doi.org/10.1016/j.jab.2018.03.001
Chen, Y., Wang, Y., Xu, L., Su, X., Zhai, L., Zhao, Y., Zhang, C., & Liu, L. (2022). Effects of genotype and culture conditions on microspore embryogenesis in radish (Raphanus sativus L.). Molecular Breeding, 42(8), 1–13. https://doi.org/10.1007/s11032-022-01312-w
Chu, C. C., Want, C. C., Sun, C. S., Hsu, C., Yin, K. C., Chu, C. Y., & Bi, F. Y. (1975). Establishment of an efficient medium for anther culture of rice, through comparative experiments on the nitrogen sources. In Sci Sin (Vol. 18, pp. 659–668). Retrieved from https://cir.nii.ac.jp/crid/1570854175254524032
Cimò, G., Marchese, A., & Germanà, M. A. (2017). Microspore embryogenesis induced through in vitro anther culture of almond (Prunus dulcis Mill.). Plant Cell, Tissue and Organ Culture, 128(1), 85–95. https://doi.org/10.1007/s11240-016-1086-2
Cordeiro, D., Alves, A., Ferraz, R., Casimiro, B., Canhoto, J., & Correia, S. (2023). An Efficient Agrobacterium-Mediated Genetic Transformation Method for Solanum betaceum Cav. Embryogenic Callus. Plants, 12(5), 1202. Retrieved from https://www.researchgate.net/publication/369031994
Das, S., Pradhan, B., & Parida, S. (2022). Effect of c old p retreatment on doubled h aploid p roduction from m utants of aromatic r ice ( Oryza sativa L .) landraces. Environment and Ecology, 40(2B), 635-640. Retrieved from https://shorturl.at/ogMFr
Duyi, S., Baran, A., & Chandra, D. S. (2017). Pigmented rice a potential source of bioactive compounds: a review. International Journal of Food Science & Technology, 52(5), 1073-1081. https://doi.org/10.1111/ijfs.13378
El, S. F., Bosila, H. A., Mansour, B. M., & Bana, A. A. (2019). Effect of Vitamins (pyridoxine and nicotinic acid), Thiamine-Hcl and Myo-Inositol at Different Concentrations on Free Amino Acids and Indoles Content of Embryogeinic Callus of in vitro Date Oalm (Sakkoty and Bartamuda Cultivar). By-Products of Palm Trees and Their Applications, 11(January), 244–252. https://doi.org/10.21741/9781644900178-20
Estaji, A., Chamani, E., & Khazaei, Z. (2021). Influence of plant growth regulators on callogenesis and on the biomass of cell suspensions in lily (Lilium ledebourii and Lilium regal). Journal of Applied Biotechnology Reports, 8(1), 63–70. https://doi.org/10.30491/jabr.2020.226481.1210
Fatima, Z., Mujib, A., Fatima, S., Arshi, A., & Umar, S. (2009). Callus induction, biomass growth, and plant regeneration in Digitalis lanata Ehrh.: influence of plant growth regulators and carbohydrates. Turkish Journal of Botany, 33(6), 393-405. https://doi.org/10.3906/bot-0805-21
Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50(1), 151–158. https://doi.org/10.1016/0014-4827(68)90403-5
Haridhi, I. K. (2023). The effect of cold pre-treatment period on callus formation of pepper ( Capsicum annuum L.) anther culture of local Aceh perintis genotype. IOP Conference Series: Earth and Environmental Science, 1183(1). https://doi.org/10.1088/1755-1315/1183/1/012040
Kalinina, N., & Kostylev, P. (2023). An in vitro anther culture method for creating rice dihaploids resistant to prolonged flooding. E3S Web of Conferences, 413. https://doi.org/10.1051/e3sconf/202341301008
Kaushal, L., Balachandran, S. M., Ulaganathan, K., & Shenoy, V. (2014). Effect of Culture Media on Improving Anther Culture Response of Rice (Oryza sativa L.). International Journal of Agriculture Innovations and Research, 3(1), 2319–1473. Retrieved from http://www.scri.sari.ac.uk/assoc/COST851/COSThome.ht
Koetje, D. S., Grimes, H. D., Wang, Y. C., & Hodges, T. K. (1989). Regeneration of indica rice (Oryza sativa L.) from primary callus derived from immature embryos. Journal of plant physiology, 135(2), 184-190. https://doi.org/10.1016/S0176-1617(89)80175-0
Kojima, S., Takahashi, Y., Kobayashi, Y., Monna, L., Sasaki, T., Araki, T., & Yano, M. (2002). Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant and cell physiology, 43(10), 1096-1105. https://doi.org/10.1093/pcp/pcf156
Lantos, C., Jancsó, M., Székely, Á., Szalóki, T., Venkatanagappa, S., & Pauk, J. (2023). Development of In Vitro Anther Culture for Doubled Haploid Plant Production in Indica Rice (Oryza sativa L.) Genotypes. Plants, 12(9), 1–16. https://doi.org/10.3390/plants12091774
Long, Y., Yang, Y., Pan, G., & Shen, Y. (2022). New Insights Into Tissue Culture Plant-Regeneration Mechanisms. Frontiers in Plant Science, 13(June). https://doi.org/10.3389/fpls.2022.926752
Lu, C. S., Lai, J. J., Fan, X. T., Liang, K. M., Yin, Y. H., Ye, Q. H., Shen, H., & Fu, Y. Q. (2025). Unveiling nitrogen preferences in indica rice: a classification study of cultivars in South China. Frontiers in Plant Science, 16(April), 1–12. https://doi.org/10.3389/fpls.2025.1568383
Mayakaduwa, R., & Silva, T. (2023). Haploid Induction in Indica Rice: Exploring New Opportunities. Plants, 12(17). https://doi.org/10.3390/plants12173118
Ming, N. J., Mostafiz, S. B., Johon, N. S., Zulkifli, N. S. A., & Wagiran, A. (2019). Combination of plant growth regulators, maltose, and partial desiccation treatment enhance somatic embryogenesis in selected malaysian rice cultivar. Plants, 8(6). https://doi.org/10.3390/plants8060144
Mishra, R., & Rao, G. J. N. (2016). In-vitro Androgenesis in Rice: Advantages, Constraints and Future Prospects. Rice Science, 23(2), 57–68. https://doi.org/10.1016/j.rsci.2016.02.001
Niroula, R., Sah, B., Bimb, H., & Nayak, S. (2005). Effect of Genotype and Culture Media on Callus Induction and Plant Regeneration from Matured Rice Grain Culture. Journal of the Institute of Agriculture and Animal Science, 26(May), 21–26. https://doi.org/10.3126/jiaas.v26i0.607
Nurhasanah, Pratama, A. N., & Sunaryo, W. (2016). Anther culture of local upland rice varieties from East Kalimantan: Effect of panicle cold pre-treatment and putrescine enriched medium. Biodiversitas, 17(1), 148–153. https://doi.org/10.13057/biodiv/d170122
Nurmansyah, Setyadi, A. H., Fatumi, N. C., Fatmawati, Y., Wulandari, R. A., & Purwantoro, A. (2021). Genetic variation of doubled haploids derived from anther culture of m1 red rice plants. Biodiversitas, 22(11), 4923–4929. https://doi.org/10.13057/biodiv/d221126
Orłowska, R., Pachota, K. A., Machczyńska, J., Niedziela, A., Makowska, K., Zimny, J., & Bednarek, P. T. (2020). Improvement of anther cultures conditions using the Taguchi method in three cereal crops. Electronic Journal of Biotechnology, 43, 8–15. https://doi.org/10.1016/j.ejbt.2019.11.001
Reddy, V. S., Leelavathi, S., & Sen, S. K. (1985). Influence of genotype and culture medium on microspore callus induction and green plant regeneration in anthers of Oryza sativa. Physiologia Plantarum, 63(3), 309–314. https://doi.org/10.1111/j.1399-3054.1985.tb04271.x
Sivachandran, R., Gnanam, R., Sudhakar, D., J, S., & Ram, S. G. (2017). Influence of genotypes, stages of microspore, pre-treatments and media factors on induction of callus from anthers of cocoa (Theobroma cacao L.). Journal of Plantation Crops, January, 162–172. https://doi.org/10.19071/jpc.2017.v45.i3.3340
Tajedini, S., Fakheri, B., Niazian, M., Mahdinezhad, N., Ghanim, A. M. A., Kazemi Pour, A., Ingelbrecht, I., & Shariatpanahi, M. E. (2023). Efficient Microspore Embryogenesis and Haploid Induction in Mutant Indica Rice (Oryza sativa L.) Cultivars. Journal of Plant Growth Regulation, 42(4), 2345–2359. https://doi.org/10.1007/s00344-022-10709-y
Theowidavitya, B., Muttaqin, M., & Tjahjoleksono, A. (2019). Analisis Metabolomik Pada Interaksi Padi dan Bakteri Metabolomics Analysis on the Interaction of Rice and Bacteria. Jurnal Sumberdaya Hayati, 5(1), 18–24. Retrieved from http://biologi.ipb.ac.id/jurnal/index.php/jsdhayati
Thi, T., Xa, T., & Lang, N. T. (2011). Rice breeding for high grain quality through anther culture. Omonrice, 18, 68–72. Retrieved from http://clrri.org/ver2/uploads/noidung/18-8.pdf
Wernicke, W., Brettell, R., Wakizuka, T., & Potrykus, I. (1981). Adventitious Embryoid and Root Formation from Rice Leaves. Zeitschrift für PflanzenphysiologieVolume, 103(4), 361-365. https://doi.org/10.1016/S0044-328X(81)80135-3
Yan, M. M., Xu, C., Kim, C. H., Um, Y. C., Bah, A. A., & Guo, D. P. (2009). Effects of explant type, culture media and growth regulators on callus induction and plant regeneration of Chinese jiaotou (Allium chinense). Scientia Horticulturae, 123(1), 124–128. https://doi.org/10.1016/j.scienta.2009.07.021
Yildiz, M. (2024). Production of Microspore-Derived Plants by Anther Culture of Cyclamen coum. Black Sea Journal of Agriculture, 7(6), 720-728. https://doi.org/10.47115/bsagriculture.1554595
Zargar, M., Zavarykina, T., Voronov, S., Pronina, I., & Bayat, M. (2022). The Recent Development in Technologies for Attaining Doubled Haploid Plants In Vivo. Agriculture (Switzerland), 12(10), 1–21. https://doi.org/10.3390/agriculture12101595
License
Copyright (c) 2025 Yoanita Fadlilah Iriani, Dian Catur Prayantini, Hartinio Natalia Nahampun, Retno Mastuti, Nunung Harijati

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






