KU Band Proximity-Coupled Supply Based Microstrip Array Antenna for Microwave Imaging Applications
DOI:
10.29303/jppipa.v11i9.11991Published:
2025-09-25Downloads
Abstract
This research focuses on the design and simulation of a 4x1 microstrip array antenna with a proximity-coupled supply technique for Ku frequency band applications, especially in microwave imaging. The antenna is designed to operate in the frequency range 12 - 16 GHz, with a resonance frequency of 14 GHz, using a Duroid 5880 substrate which has a thickness of 3.15 mm and a relative permittivity of 2.2. Array configuration and proximity-coupled techniques are applied to improve impedance matching as well as expand bandwidth. Evaluation through simulation includes important parameters such as return loss, gain, and radiation patterns. The simulation results show a return loss of -26.46 dB at a frequency of 14 GHz, which shows high transmission efficiency with minimal reflections. The radiation patterns in the azimuthal and elevation planes show consistent directivity, with stable gain throughout the frequency range. These results confirm that the designed microstrip array antenna is suitable for microwave imaging applications in the Ku band. The antenna design in this research produces high efficiency, directional radiation, and minimal signal loss, so it is able to support accurate and detailed imaging.
Keywords:
Ku-Band Microstrip array antenna Proximity-coupled feed Radiation pattern Return lossReferences
Anindito, A., Putranto, A., Alam, S., Surjati, I., Sari, L., & Vaswani, R. (2021). Desain Antena Mikrostrip Array 2x1 Elemen dengan Teknik Inset dan Slit untuk Sistem Komunikasi 5G. Jurnal Telematika, 16(1), 18–24. https://doi.org/10.61769/telematika.v16i1.388 DOI: https://doi.org/10.61769/telematika.v16i1.388
Aulia, N., & Elisma. (2021). Desain Antena Mikrostrip Array 2x4 dengan Teknik Pencatuan Proximity Coupled untuk Aplikasi 5G pada Frekuensi 2,6 GHz. In Prosiding The 12th Industrial Research Workshop and National Seminar (Issue 5, pp. 717–723). Retrieved from https://jurnal.polban.ac.id/proceeding/article/view/2787/2177
Benny, R., Anjit, T. A., & Mythili, P. (2020). An Overview Of Microwave Imaging For Breast Tumor Detection. Progress In Electromagnetics Research B, 87, 61–91. https://doi.org/10.2528/PIERB20012402 DOI: https://doi.org/10.2528/PIERB20012402
Carkaci, M. E., & Secmen, M. (2020). Design and prototype manufacturing of a feed system for Ku-band satellite communication by using 3D FDM/PLA printing and conductive paint technology. International Journal of RF and Microwave Computer-Aided Engineering, 30(4), 1–15. https://doi.org/10.1002/mmce.22062 DOI: https://doi.org/10.1002/mmce.22062
Ccoillo-Ramos, N. R., Aboserwal, N., Qamar, Z., & Salazar-Cerreno, J. L. (2021). Improved analytical model for a proximity coupled microstrip patch antenna (pc-mspa). IEEE Transactions on Antennas and Propagation, 69(10), 6244–6252. https://doi.org/10.1109/TAP.2021.3082570 DOI: https://doi.org/10.1109/TAP.2021.3082570
Chen, C. (2022). A Compact Wideband Endfire Filtering Antenna Inspired by a Uniplanar Microstrip Antenna. IEEE Antennas and Wireless Propagation Letters, 21(4), 853–857. https://doi.org/10.1109/LAWP.2022.3151800 DOI: https://doi.org/10.1109/LAWP.2022.3151800
Elijah, A. A., & Mokayef, M. (2019). Miniature microstrip antenna for IoT application. Materials Today: Proceedings, 29, 43–47. https://doi.org/10.1016/j.matpr.2020.05.678 DOI: https://doi.org/10.1016/j.matpr.2020.05.678
Ho, S. C., Shah, R., Garrison, J. L., Mohammed, P. N., Schoenwald, A., Pannu, R., & Piepmeier, J. R. (2019). Wideband Ocean Altimetry Using Ku-Band and K-Band Satellite Signals of Opportunity: Proof of Concept. IEEE Geoscience and Remote Sensing Letters, 16(7), 1012–1016. https://doi.org/10.1109/LGRS.2019.2891976 DOI: https://doi.org/10.1109/LGRS.2019.2891976
Lakshmi, M. B., Naga, P. A. S., Poojitha, K., & Nikitha, B. (2024). Design and Analysis of Microstrip Patch Antenna for Wi-fi Communication. 2024 3rd International Conference for Innovation in Technology, INOCON 2024, 97, 163–176. https://doi.org/10.1109/INOCON60754.2024.10511784 DOI: https://doi.org/10.1109/INOCON60754.2024.10511784
Madiawati, H., & Simanjuntak, A. B. (2020). Desain dan Realisasi Antena Mikrostrip Patch Rectangular Array dengan Slit pada Frekuensi 2620-2690 MHz untuk Aplikasi LTE. Jurnal Teknik: Media Pengembangan Ilmu Dan Aplikasi Teknik, 19(2), 110–119. https://doi.org/10.26874/jt.vol19no02.232 DOI: https://doi.org/10.26874/jt.vol19no02.232
Madiawati, H., Simanjuntak, A. B., Sulaeman, E., & Hibban, M. S. I. (2022). Antena Mikrostrip Array untuk Aplikasi Radar Cuaca pada Frekuensi C-Band Menggunakan Metode Defected Ground Structure. JTERA (Jurnal Teknologi Rekayasa), 7(2), 181. https://doi.org/10.31544/jtera.v7.i2.2022.181-188 DOI: https://doi.org/10.31544/jtera.v7.i2.2022.181-188
Mar Phyo, Z., May Nway, T., Kyu Kyu Win, K., & Myo Tun, H. (2020). Development of Microstrip Patch Antenna Design for GPS in Myanmar. American Journal of Electromagnetics and Applications, 8(1), 1. https://doi.org/10.11648/j.ajea.20200801.11 DOI: https://doi.org/10.11648/j.ajea.20200801.11
Natalia, Quzwain, K., Olivia, L. N., & Rahmawati, P. (2025). Performance Analysis of a Unidirectional Double E-Shaped Microstrip Antenna in the ISM Band. Jurnal Penelitian Pendidikan IPA, 11(8), 1062–1067. https://doi.org/10.29303/jppipa.v11i8.12118 DOI: https://doi.org/10.29303/jppipa.v11i8.12118
Nikulin, A. V., Kosmynin, A. N., Burtsev, V. D., Prokhorov, S. Y., Vosheva, T. S., & Filonov, D. S. (2024). Towards phased array antenna operating in Ku-band for satellite communications. Photonics and Nanostructures - Fundamentals and Applications, 58. https://doi.org/10.1016/j.photonics.2023.101216 DOI: https://doi.org/10.1016/j.photonics.2023.101216
Phaneendra, C. N., Ram, K. V. V., Naveen, D., Sreekar, L., & Naik, K. K. (2022). Design a Multi-Band MIMO Patch Antenna at X, K, and Ku Band for Wireless Applications. 4th International Conference on Emerging Research in Electronics, Computer Science and Technology, ICERECT 2022. https://doi.org/10.1109/ICERECT56837.2022.10060667 DOI: https://doi.org/10.1109/ICERECT56837.2022.10060667
Qiao, H., Zhang, P., Li, Z., Huang, L., Zhao, C., Gao, S., Liu, C., Wu, Z., Liang, S., Zhou, J., Sun, W., & Wang, L. (2023). Snow profile reconstruction from tomographic UAV SAR. International Journal of Applied Earth Observation and Geoinformation, 118, 103291. https://doi.org/10.1016/j.jag.2023.103291 DOI: https://doi.org/10.1016/j.jag.2023.103291
Rana, M. S., & Smieee, M. M. R. (2022). Design and analysis of microstrip patch antenna for 5G wireless communication systems. Bulletin of Electrical Engineering and Informatics, 11(6), 3329–3337. https://doi.org/10.11591/eei.v11i6.3955 DOI: https://doi.org/10.11591/eei.v11i6.3955
Rodriguez-Duarte, D. O., Vasquez, J. A. T., Scapaticci, R., Crocco, L., & Vipiana, F. (2021). Assessing a microwave imaging system for brain stroke monitoring via high fidelity numerical modelling. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 5(3), 238–245. https://doi.org/10.1109/JERM.2020.3049071 DOI: https://doi.org/10.1109/JERM.2020.3049071
Sadadiwala, V., Singh, V., & Sharma, D. (2022). Ku band metamaterial absorber for stealth applications against Radar and Military Satcom. PriMera Scientific Engineering, 1(3), 2834–2550. https://doi.org/10.56831/psen-01-018 DOI: https://doi.org/10.56831/PSEN-01-018
Satrusallya, S., & Mohanty, M. N. (2021). Design of antenna array for Ku-band wireless application. Instrumentation Mesure Metrologie, 20(2), 107–112. https://doi.org/10.18280/i2m.200207 DOI: https://doi.org/10.18280/i2m.200207
Shirkolaei, M. M. (2020). High efficiency X-band series-fed microstrip array antenna. Progress In Electromagnetics Research C, 105, 35–45. https://doi.org/10.2528/pierc20061003 DOI: https://doi.org/10.2528/PIERC20061003
Sowjanya, P. D., Alsath, M. G. N., Kirubaveni, S., Govindaraj, R., & Santhosh, N. (2022). Design and Experimental Evaluation of a Proximity Coupled Transparent Patch Antenna for WLAN. IETE Journal of Research, 68(1), 77–84. https://doi.org/10.1080/03772063.2019.1588174 DOI: https://doi.org/10.1080/03772063.2019.1588174
Wang, L. (2023). Microwave Imaging and Sensing Techniques for Breast Cancer Detection. Micromachines, 14(7), 1462. https://doi.org/10.3390/mi14071462 DOI: https://doi.org/10.3390/mi14071462
Wang, X., Qin, T., Qin, Y., Abdelrahman, A. H., Witte, R. S., & Xin, H. (2019). Microwave-Induced Thermoacoustic Imaging for Embedded Explosives Detection in High-Water Content Medium. In IEEE Transactions on Antennas and Propagation (Vol. 67, Issue 7, pp. 4803–4810). https://doi.org/10.1109/TAP.2019.2908267 DOI: https://doi.org/10.1109/TAP.2019.2908267
Xiao, L., Xiang, Y., Zhai, Y., Shi, J., Liu, G., Wu, Y., Peng, T., & Yang, Z. (2020). Development of frequency synthesizer for Ku band surface surveillance radar. Proceedings of 2020 IEEE 3rd International Conference of Safe Production and Informatization, IICSPI 2020, 411–414. https://doi.org/10.1109/IICSPI51290.2020.9332374 DOI: https://doi.org/10.1109/IICSPI51290.2020.9332374
Yuliarto, M. N. T., & Wagyana, A. (2021). Rancang Bangun Antena Mikrostrip Triangular Patch Planar Array 2x2 Elements Frekuensi 1,2 GHz untuk Penerima Video Wireless LCD Projector. Spektral, 2(1), 50–57. https://doi.org/10.32722/spektral.v2i1.3801 DOI: https://doi.org/10.32722/spektral.v2i1.3801
Zhong, J., Zhao, D., & You, X. (2021). A Ku-Band CMOS power amplifier with series-shunt LC notch filter for satellite communications. IEEE Transactions on Circuits and Systems I: Regular Papers, 68(5), 1869–1880. https://doi.org/10.1109/TCSI.2021.3056537 DOI: https://doi.org/10.1109/TCSI.2021.3056537
License
Copyright (c) 2025 Fauzia Anis Sekar Ningrum, Yudha Riwanto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






