Peltier as a Thermoelectric Generator from Household Waste
DOI:
10.29303/jppipa.v11i8.12004Published:
2025-08-25Downloads
Abstract
The Utilization of heat energy as a generator of electrical energy with micro capacity can be done by using thermoelectric elements. Conversion system with Thermoelectric Generator (TEG) elements can be generated from heat from burning waste. Based on the nature and advantages of the fuel components, this study is to study and develop a system according to the capabilities of the TEG components that can be designed into a super mini generator system, namely by converting heat from fire into electricity. The method used in this study is a system for converting heat energy into electricity. The heat from the fire will be used to recharge batteries such as HT batteries, flashlights, GPS and others. The input or input to the system is the heat from combustion. The input component itself is a converter, namely a peltier. The function of the peltier is to directly convert heat energy into electricity. The results of the study are an output of 3.7 V. This design uses the IC LM317 as a regulator to process the output voltage of the conversion system. The purpose of regulation is so that the battery does not overcharge and is damaged.
Keywords:
Thermoelectric Thermoelectric Generator (TEG) Peltier IC LM317References
Adriani, A. (2019). Analisis teknologi pembangkit listrik biomassa pada sistem pencahayaan peternakan ayam di desa borimatangkasa kec. bajeng barat. Vertex Elektro, 11(2), 40–51. Retrieved from https://core.ac.uk/download/pdf/233601579.pdf
Al-Habahbeh, O. M., Mohammad, A., Al-Khalidi, A., Khanfer, M., & Obeid, M. (2018). Design optimization of a large-scale thermoelectric generator. Journal of King Saud University-Engineering Sciences, 30(2), 177–182. https://doi.org/10.1016/j.jksues.2016.01.007
Børset, M. T., Wilhelmsen, Ø., Kjelstrup, S., & Burheim, O. S. (2017). Exploring the potential for waste heat recovery during metal casting with thermoelectric generators: On-site experiments and mathematical modeling. Energy, 118, 865–875. https://doi.org/10.1016/j.energy.2016.10.109
Chaturvedı, E., & Mamtanı, V. (2020). An investigative methodology through solid modelling and numerical analysis for designing a thermo-electric generator system. Journal of Thermal Engineering, 6(2), 99–113. https://doi.org/10.18186/thermal.728046
Chen, C., Wang, X., Wang, Y., Yang, D., Yao, F., Zhang, W., Wang, B., Sewvandi, G. A., Yang, D., & Hu, D. (2020). Additive manufacturing of piezoelectric materials. Advanced Functional Materials, 30(52), 2005141. https://doi.org/10.1002/adfm.202005141
Dineva, P., Gross, D., Müller, R., & Rangelov, T. (2014). Piezoelectric materials. In Dynamic Fracture of Piezoelectric Materials: Solution of Time-Harmonic Problems via BIEM (pp. 7–32). Springer. https://doi.org/10.1007/978-3-319-03961-9_1
Domínguez-Adame, F., Martín-Gonzalez, M. S., Sánchez, D., & Cantarero, A. (2019). Nanowires: A route to efficient thermoelectric devices. Physica E: Low-Dimensional Systems and Nanostructures, 113, 213–225. https://doi.org/10.1016/j.physe.2019.03.021
Hakim, I. I., Putra, N., & Usman, M. (2018). Analysis of the use of thermoelectric generator and heat pipe for waste heat utilization. 67, 2057. https://doi.org/10.1051/E3SCONF/20186702057
Haryanti, M., Saputro, W., & Yulianti, B. (2022). Thermoelectric Generator for Micropower Application Using Household Waste. 2022 International Conference on Informatics Electrical and Electronics (ICIEE), 1–5. https://doi.org/10.1109/ICIEE55596.2022.10010009
Kim, C. N. (2018). Development of a numerical method for the performance analysis of thermoelectric generators with thermal and electric contact resistance. Applied Thermal Engineering, 130, 408–417. https://doi.org/10.1016/j.applthermaleng.2017.10.158
Liao, M., He, Z., Jiang, C., Fan, X., Li, Y., & Qi, F. (2018). A three-dimensional model for thermoelectric generator and the influence of Peltier effect on the performance and heat transfer. Applied Thermal Engineering, 133, 493–500. https://doi.org/10.1016/j.applthermaleng.2018.01.080
Lu, X., Zhang, Q., Liao, J., Chen, H., Fan, Y., Xing, J., Gu, S., Huang, J., Ma, J., Wang, J., & others. (2020). High-efficiency thermoelectric power generation enabled by homogeneous incorporation of MXene in (Bi, Sb) 2Te3 matrix. Advanced Energy Materials, 10(2), 1902986. https://doi.org/10.1002/aenm.201902986
Muchlis, M., & Permana, A. D. (2003). Proyeksi Kebutuhan Listrik PLN Tahun 2003 sd 2020. Pengembangan Sistem Kelistrikan Dalam Menunjang Pembangunan Nasional Jangka Panjang, 19–29. Retrieved from https://agussugiyono.wordpress.com/wp-content/uploads/2022/07/2006-listrik-2.pdf
Nesarajah, M., & Frey, G. (2016). Thermoelectric power generation: Peltier element versus thermoelectric generator. IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, 4252–4257. https://doi.org/10.1109/IECON.2016.7793029
Ohnuma, Y., Matsuo, M., & Maekawa, S. (2017). Theory of the spin Peltier effect. Physical Review B, 96(13), 134412. https://doi.org/10.1103/PhysRevB.96.134412
Rafika, H., Mainil, R. I., & Aziz, A. (2016). Kaji eksperimental pembangkit listrik berbasis thermoelectric generator (TEG) dengan pendinginan menggunakan udara. Jurnal Sains Dan Teknologi, 15(1), 7–11. https://doi.org/10.31258/jst.v15.n1.p7-11
Remeli, M. F., Date, A., Orr, B., Ding, L. C., Singh, B., Affandi, N. D. N., & Akbarzadeh, A. (2016). Experimental investigation of combined heat recovery and power generation using a heat pipe assisted thermoelectric generator system. Energy Conversion and Management, 111, 147–157. https://doi.org/10.1016/j.enconman.2015.12.032
Rohman, M. S., Agus Supardi, S. T., & others. (2021). Lantai piezoelektri sebagai penghasil sumber energi listrik dengan memanfaatkan pijakan kaki [Thesis: Universitas Muhammadiyah Surakarta]. Retrieved from https://eprints.ums.ac.id/89486/
Sasmita, S. A., Ramadhan, M. T., Kamal, M. I., Dewanto, Y., & others. (2019). Alternatif pembangkit energi listrik menggunakan prinsip termoelektrik generator. TESLA: Jurnal Teknik Elektro, 21(1), 57–61. https://doi.org/10.24912/tesla.v21i1.3249
Spanner, K., & Koc, B. (2016). Piezoelectric motors, an overview. Actuators, 5(1), 6. https://doi.org/10.3390/act5010006
Tambunan, W., Umar, L., & Fuji, D. (2015). Pengembangan Dan Optimalisasi Elemen Peltier Sebagai Generator Termal Memanfaatkan Energi Panas Terbuang. 12, 720–726. Retrieved from https://shorturl.asia/YpfxP
Uchino, K. (2017). The development of piezoelectric materials and the new perspective. In Advanced piezoelectric materials (pp. 1–92). Elsevier. https://doi.org/10.1016/B978-0-08-102135-4.00001-1
Varga, Z., & Rácz, E. (2022). Experimental Investigation of the Performance of a Thermoelectric Generator. 2022 IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics (SAMI), 159–164. https://doi.org/10.1109/SAMI54271.2022.9780741
Wang, C., Tang, S., Liu, X., Su, G. H., Tian, W., & Qiu, S. (2020). Experimental study on heat pipe thermoelectric generator for industrial high temperature waste heat recovery. Applied Thermal Engineering, 175, 115299. https://doi.org/10.1016/j.applthermaleng.2020.115299
Zoui, M. A., Bentouba, S., Stocholm, J. G., & Bourouis, M. (2020). A review on thermoelectric generators: Progress and applications. Energies, 13(14), 3606. https://doi.org/10.3390/en13143606
License
Copyright (c) 2025 Agus Supranartha, I Wayan Dikse Pancane, Nengah Sunaya, I Gde Nyoman Sangka, I Nyoman Mudiana

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






