Vol. 11 No. 8 (2025): August
Open Access
Peer Reviewed

Peltier as a Thermoelectric Generator from Household Waste

Authors

Agus Supranartha , I Wayan Dikse Pancane , Nengah Sunaya , I Gde Nyoman Sangka , I Nyoman Mudiana

DOI:

10.29303/jppipa.v11i8.12004

Published:

2025-08-25

Downloads

Abstract

The Utilization of heat energy as a generator of electrical energy with micro capacity can be done by using thermoelectric elements. Conversion system with Thermoelectric Generator (TEG) elements can be generated from heat from burning waste. Based on the nature and advantages of the fuel components, this study is to study and develop a system according to the capabilities of the TEG components that can be designed into a super mini generator system, namely by converting heat from fire into electricity. The method used in this study is a system for converting heat energy into electricity. The heat from the fire will be used to recharge batteries such as HT batteries, flashlights, GPS and others. The input or input to the system is the heat from combustion. The input component itself is a converter, namely a peltier. The function of the peltier is to directly convert heat energy into electricity. The results of the study are an output of 3.7 V. This design uses the IC LM317 as a regulator to process the output voltage of the conversion system. The purpose of regulation is so that the battery does not overcharge and is damaged.

Keywords:

Thermoelectric Thermoelectric Generator (TEG) Peltier IC LM317

References

Adriani, A. (2019). Analisis teknologi pembangkit listrik biomassa pada sistem pencahayaan peternakan ayam di desa borimatangkasa kec. bajeng barat. Vertex Elektro, 11(2), 40–51. Retrieved from https://core.ac.uk/download/pdf/233601579.pdf

Al-Habahbeh, O. M., Mohammad, A., Al-Khalidi, A., Khanfer, M., & Obeid, M. (2018). Design optimization of a large-scale thermoelectric generator. Journal of King Saud University-Engineering Sciences, 30(2), 177–182. https://doi.org/10.1016/j.jksues.2016.01.007

Børset, M. T., Wilhelmsen, Ø., Kjelstrup, S., & Burheim, O. S. (2017). Exploring the potential for waste heat recovery during metal casting with thermoelectric generators: On-site experiments and mathematical modeling. Energy, 118, 865–875. https://doi.org/10.1016/j.energy.2016.10.109

Chaturvedı, E., & Mamtanı, V. (2020). An investigative methodology through solid modelling and numerical analysis for designing a thermo-electric generator system. Journal of Thermal Engineering, 6(2), 99–113. https://doi.org/10.18186/thermal.728046

Chen, C., Wang, X., Wang, Y., Yang, D., Yao, F., Zhang, W., Wang, B., Sewvandi, G. A., Yang, D., & Hu, D. (2020). Additive manufacturing of piezoelectric materials. Advanced Functional Materials, 30(52), 2005141. https://doi.org/10.1002/adfm.202005141

Dineva, P., Gross, D., Müller, R., & Rangelov, T. (2014). Piezoelectric materials. In Dynamic Fracture of Piezoelectric Materials: Solution of Time-Harmonic Problems via BIEM (pp. 7–32). Springer. https://doi.org/10.1007/978-3-319-03961-9_1

Domínguez-Adame, F., Martín-Gonzalez, M. S., Sánchez, D., & Cantarero, A. (2019). Nanowires: A route to efficient thermoelectric devices. Physica E: Low-Dimensional Systems and Nanostructures, 113, 213–225. https://doi.org/10.1016/j.physe.2019.03.021

Hakim, I. I., Putra, N., & Usman, M. (2018). Analysis of the use of thermoelectric generator and heat pipe for waste heat utilization. 67, 2057. https://doi.org/10.1051/E3SCONF/20186702057

Haryanti, M., Saputro, W., & Yulianti, B. (2022). Thermoelectric Generator for Micropower Application Using Household Waste. 2022 International Conference on Informatics Electrical and Electronics (ICIEE), 1–5. https://doi.org/10.1109/ICIEE55596.2022.10010009

Kim, C. N. (2018). Development of a numerical method for the performance analysis of thermoelectric generators with thermal and electric contact resistance. Applied Thermal Engineering, 130, 408–417. https://doi.org/10.1016/j.applthermaleng.2017.10.158

Liao, M., He, Z., Jiang, C., Fan, X., Li, Y., & Qi, F. (2018). A three-dimensional model for thermoelectric generator and the influence of Peltier effect on the performance and heat transfer. Applied Thermal Engineering, 133, 493–500. https://doi.org/10.1016/j.applthermaleng.2018.01.080

Lu, X., Zhang, Q., Liao, J., Chen, H., Fan, Y., Xing, J., Gu, S., Huang, J., Ma, J., Wang, J., & others. (2020). High-efficiency thermoelectric power generation enabled by homogeneous incorporation of MXene in (Bi, Sb) 2Te3 matrix. Advanced Energy Materials, 10(2), 1902986. https://doi.org/10.1002/aenm.201902986

Muchlis, M., & Permana, A. D. (2003). Proyeksi Kebutuhan Listrik PLN Tahun 2003 sd 2020. Pengembangan Sistem Kelistrikan Dalam Menunjang Pembangunan Nasional Jangka Panjang, 19–29. Retrieved from https://agussugiyono.wordpress.com/wp-content/uploads/2022/07/2006-listrik-2.pdf

Nesarajah, M., & Frey, G. (2016). Thermoelectric power generation: Peltier element versus thermoelectric generator. IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, 4252–4257. https://doi.org/10.1109/IECON.2016.7793029

Ohnuma, Y., Matsuo, M., & Maekawa, S. (2017). Theory of the spin Peltier effect. Physical Review B, 96(13), 134412. https://doi.org/10.1103/PhysRevB.96.134412

Rafika, H., Mainil, R. I., & Aziz, A. (2016). Kaji eksperimental pembangkit listrik berbasis thermoelectric generator (TEG) dengan pendinginan menggunakan udara. Jurnal Sains Dan Teknologi, 15(1), 7–11. https://doi.org/10.31258/jst.v15.n1.p7-11

Remeli, M. F., Date, A., Orr, B., Ding, L. C., Singh, B., Affandi, N. D. N., & Akbarzadeh, A. (2016). Experimental investigation of combined heat recovery and power generation using a heat pipe assisted thermoelectric generator system. Energy Conversion and Management, 111, 147–157. https://doi.org/10.1016/j.enconman.2015.12.032

Rohman, M. S., Agus Supardi, S. T., & others. (2021). Lantai piezoelektri sebagai penghasil sumber energi listrik dengan memanfaatkan pijakan kaki [Thesis: Universitas Muhammadiyah Surakarta]. Retrieved from https://eprints.ums.ac.id/89486/

Sasmita, S. A., Ramadhan, M. T., Kamal, M. I., Dewanto, Y., & others. (2019). Alternatif pembangkit energi listrik menggunakan prinsip termoelektrik generator. TESLA: Jurnal Teknik Elektro, 21(1), 57–61. https://doi.org/10.24912/tesla.v21i1.3249

Spanner, K., & Koc, B. (2016). Piezoelectric motors, an overview. Actuators, 5(1), 6. https://doi.org/10.3390/act5010006

Tambunan, W., Umar, L., & Fuji, D. (2015). Pengembangan Dan Optimalisasi Elemen Peltier Sebagai Generator Termal Memanfaatkan Energi Panas Terbuang. 12, 720–726. Retrieved from https://shorturl.asia/YpfxP

Uchino, K. (2017). The development of piezoelectric materials and the new perspective. In Advanced piezoelectric materials (pp. 1–92). Elsevier. https://doi.org/10.1016/B978-0-08-102135-4.00001-1

Varga, Z., & Rácz, E. (2022). Experimental Investigation of the Performance of a Thermoelectric Generator. 2022 IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics (SAMI), 159–164. https://doi.org/10.1109/SAMI54271.2022.9780741

Wang, C., Tang, S., Liu, X., Su, G. H., Tian, W., & Qiu, S. (2020). Experimental study on heat pipe thermoelectric generator for industrial high temperature waste heat recovery. Applied Thermal Engineering, 175, 115299. https://doi.org/10.1016/j.applthermaleng.2020.115299

Zoui, M. A., Bentouba, S., Stocholm, J. G., & Bourouis, M. (2020). A review on thermoelectric generators: Progress and applications. Energies, 13(14), 3606. https://doi.org/10.3390/en13143606

Author Biographies

Agus Supranartha, Politeknik Negeri Bali

Author Origin : Indonesia

I Wayan Dikse Pancane, Universitas Pendidiknan Nasional

Author Origin : Indonesia

Nengah Sunaya, Universitas Pendidiknan Nasional

Author Origin : Indonesia

I Gde Nyoman Sangka, Politeknik Negeri Bali

Author Origin : Indonesia

I Nyoman Mudiana, Politeknik Negeri Bali

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Supranartha, A., Pancane, I. W. D., Sunaya, N., Sangka, I. G. N., & Mudiana, I. N. (2025). Peltier as a Thermoelectric Generator from Household Waste. Jurnal Penelitian Pendidikan IPA, 11(8), 33–37. https://doi.org/10.29303/jppipa.v11i8.12004