Vol. 11 No. 8 (2025): August
Open Access
Peer Reviewed

Laboratory Study of Geotechnical Characteristics of Soil in Landslide-Prone Zone in Talamau District, West Pasaman Regency

Authors

Nofrizal , Fauzan , Abdul Hakam , Bambang Istijono , Andriani Setiawan , Aprisal

DOI:

10.29303/jppipa.v11i8.12046

Published:

2025-08-25

Downloads

Abstract

The main triggering factor for landslides is high rainfall intensity, especially during the rainy season. Excessive rainfall can cause an increase in water content in the soil, which in turn will reduce the shear strength of the soil and increase the volume weight of the soil. The method used is a laboratory experiment by taking samples from the field. The sample of this study was sandy clay soil taken from a landslide-prone area located in Talamau District, West Pasaman Regency. Based on the results of soil geotechnical laboratory tests in the landslide-prone zone in Talamau District, West Pasaman Regency, it can be concluded that the soil sample has moderate plasticity characteristics with a Liquid Limit of 59.39%, Plastic Limit of 49.77%, and Plasticity Index of 9.62%. The soil reaches a maximum dry density of 1.37 gr/cm³ at an optimum water content of 500 ml, with a grain size distribution dominated by the sand fraction (83.978% retained on sieve No. 4-20) and a very low fine material content (1.234%). The results of the triaxial test showed soil behavior that varied from brittle to strain-hardening depending on the level of cell stress. Overall, the soil can be classified as well-graded sand with good drainage but low cohesion, thus requiring additional stabilization for construction applications in landslide-prone areas.

Keywords:

Laboratory study Landslide prone West Pasaman

References

Afolagboye, L. O., Abdu-Raheem, Y. A., Ajayi, D. E., & Talabi, A. O. (2021). A comparison between the consistency limits of lateritic soil fractions passing through sieve numbers 40 and 200. Innovative Infrastructure Solutions, 6(2), 97. https://doi.org/10.1007/s41062-020-00427-3

Ahmad, S., Shah Alam Ghazi, M., Syed, M., & Al-Osta, M. A. (2024). Utilization of fly ash with and without secondary additives for stabilizing expansive soils: A review. Results in Engineering, 22, 102079. https://doi.org/10.1016/j.rineng.2024.102079

Alcántara-Ayala, I. (2025). Landslides in a changing world. Landslides, 22(9), 2851–2865. https://doi.org/10.1007/s10346-024-02451-1

Bari, F., Istijono, B., Yuhendra, R., Hakam, A., Noer, M., & Ophiyandri, T. (2023). Potential debris flow after earthquake in Mount Talamau Pasaman district and West Pasaman district. IOP Conference Series: Earth and Environmental Science, 1173(1), 012069. https://doi.org/10.1088/1755-1315/1173/1/012069

Bian, M., Qiu, H., & Chen, X. (2025). The Distribution Characteristics of Large Landslides Along the Daduhe River in the Eastern Tibetan Plateau and Their Effects on Landscape Evolution. Remote Sensing, 17(7), 1133. https://doi.org/10.3390/rs17071133

Bilal, M., Xing, A., & Hazarika, H. (2025). The Chinese loess plateau, earthquakes, and flowslides: the need to enhance geotechnical disaster resilience. Landslides, 22(2), 591–596. https://doi.org/10.1007/s10346-024-02430-6

Brempong, M. B., Amankwaa-Yeboah, P., Yeboah, S., Owusu Danquah, E., Agyeman, K., Keteku, A. K., Addo-Danso, A., & Adomako, J. (2023). Soil and water conservation measures to adapt cropping systems to climate change facilitated water stresses in Africa. Frontiers in Sustainable Food Systems, 6, 1091665. https://doi.org/10.3389/fsufs.2022.1091665

Carrière, S. R., Jongmans, D., Chambon, G., Bièvre, G., Lanson, B., Bertello, L., Berti, M., Jaboyedoff, M., Malet, J.-P., & Chambers, J. E. (2018). Rheological properties of clayey soils originating from flow-like landslides. Landslides, 15(8), 1615–1630. https://doi.org/10.1007/s10346-018-0972-6

Centeno, D. D. (2024). Socio-Spatial Analysis of Indigenous Cultural Tourism Sites: A Comparative Study of Kampoeng Wisata Cinangneng, Bogor, Indonesia and Tam-Awan Village, Baguio City, Philippines. IOP Conference Series: Earth and Environmental Science, 1384(1), 012023. https://doi.org/10.1088/1755-1315/1384/1/012023

Chanyshev, A. (2023). A way to determine the positive direction of the shear force on the elemental area. Geohazard Mechanics, 1(2), 179–184. https://doi.org/10.1016/j.ghm.2023.04.004

Chen, J.-N., Ren, X., Xu, H., Zhang, C., & Xia, L. (2022). Effects of Grain Size and Moisture Content on the Strength of Geogrid-Reinforced Sand in Direct Shear Mode. International Journal of Geomechanics, 22(4), 4022006. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002309

Das, T., Rao, V. D., & Choudhury, D. (2022). Numerical investigation of the stability of landslide-affected slopes in Kerala, India, under extreme rainfall event. Natural Hazards, 114(1), 751–785. https://doi.org/10.1007/s11069-022-05411-x

Daud, A. Y., Syafri, S., & Jaya, B. (2025). Analisis Mitigasi Bencana Tanah Longsor Di Kecamatan Kalukku Kabupaten Mamuju. Urban and Regional Studies Journal, 7(2), 190–203. https://doi.org/10.35965/ursj.v7i2.6043

Doan, T., Indraratna, B., Nguyen, T. T., & Rujikiatkamjorn, C. (2023). Interactive Role of Rolling Friction and Cohesion on the Angle of Repose through a Microscale Assessment. International Journal of Geomechanics, 23(1), 4022250. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002632

Frene, J. P., Pandey, B. K., & Castrillo, G. (2024). Under pressure: elucidating soil compaction and its effect on soil functions. Plant and Soil, 502(1), 267–278. https://doi.org/10.1007/s11104-024-06573-2

Ghoreishi, B., Khaleghi Esfahani, M., Alizadeh Lushabi, N., Amini, O., Aghamolaie, I., Hashim, N. A. A. N., & Alizadeh, S. M. S. (2021). Assessment of Geotechnical Properties and Determination of Shear Strength Parameters. Geotechnical and Geological Engineering, 39(1), 461–478. https://doi.org/10.1007/s10706-020-01504-1

Gong, F., Luo, S., Lin, G., & Li, X. (2020). Evaluation of Shear Strength Parameters of Rocks by Preset Angle Shear, Direct Shear and Triaxial Compression Tests. Rock Mechanics and Rock Engineering, 53(5), 2505–2519. https://doi.org/10.1007/s00603-020-02050-1

Guzzetti, F., Gariano, S. L., Peruccacci, S., Brunetti, M. T., & Melillo, M. (2022). Rainfall and landslide initiation. In Rainfall (pp. 427–450). Elsevier. https://doi.org/10.1016/B978-0-12-822544-8.00012-3

Heo, S., Sohn, W., Park, S., & Lee, D. K. (2024). Multi-hazard assessment for flood and Landslide risk in Kalimantan and Sumatra: Implications for Nusantara, Indonesia’s new capital. Heliyon, 10(18), e37789. https://doi.org/10.1016/j.heliyon.2024.e37789

Hutchings, S. J., & Mooney, W. D. (2021). The Seismicity of Indonesia and Tectonic Implications. Geochemistry, Geophysics, Geosystems, 22(9), 2021 009812. https://doi.org/10.1029/2021GC009812

Innocenti, A., Rosi, A., Tofani, V., Pazzi, V., Gargini, E., Masi, E. B., Segoni, S., Bertolo, D., Paganone, M., & Casagli, N. (2023). Geophysical Surveys for Geotechnical Model Reconstruction and Slope Stability Modelling. Remote Sensing, 15(8), 2159. https://doi.org/10.3390/rs15082159

Islam, I., Ahmed, W., Rizwan, M., Ullah, S., Orakzai, A. U., & Petrounias, P. (2024). Investigating the role of geochemistry and geotechnical properties in landslide characterization and triggering mechanisms: A case study from Dir Upper, Khyber Pakhtunkhwa Pakistan. Physics and Chemistry of the Earth, Parts A/B/C, 135, 103636. https://doi.org/10.1016/j.pce.2024.103636

Jastrzębska, M. (2021). Modern Displacement Measuring Systems Used in Geotechnical Laboratories: Advantages and Disadvantages. Sensors, 21(12), 4139. https://doi.org/10.3390/s21124139

Kausarian, H., Illahi, R. R., Suryadi, A., Sumantyo, J. T. S., & Batara. (2024). Soil Movement Vulnerability Zones Determination Based on RS/GIS Analysis and Geological Mapping in Koto Tinggi Area, Lima Puluh Kota, West Sumatra. IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 4864–4867. https://doi.org/10.1109/IGARSS53475.2024.10642317

Kumar, P. (2024). Social and Economic Impact in the Landslide Prone Zones and Related Policies. In Landslides in the Himalayan Region: Risk Assessment and Mitigation Strategy for Sustainable Management (pp. 499–529). Springer Nature Singapore. https://doi.org/10.1007/978-981-97-4680-4_22

Lin, S., Liang, Z., Guo, H., Hu, Q., Cao, X., & Zheng, H. (2025). Application of machine learning in early warning system of geotechnical disaster: a systematic and comprehensive review. Artificial Intelligence Review, 58(6), 168. https://doi.org/10.1007/s10462-025-11175-0

McColl, S. T. (2022). Landslide causes and triggers. In Landslide Hazards, Risks, and Disasters (pp. 13–41). Elsevier. https://doi.org/10.1016/B978-0-12-818464-6.00011-1

Momeni, M., Bayat, M., & Ajalloeian, R. (2022). Laboratory investigation on the effects of pH-induced changes on geotechnical characteristics of clay soil. Geomechanics and Geoengineering, 17(1), 188–196. https://doi.org/10.1080/17486025.2020.1716084

Muhiddin, A. B., Nur, S. H., Harianto, T., Djamaluddin, R., Arsyad, A., & Suprapti, A. (2021). Dissemination of disaster mitigation in landslide-prone areas. JURNAL TEPAT: Applied Technology for Community Service, 4(2), 129–136. https://doi.org/10.25042/jurnal_tepat.v4i2.191

Nguyen, T. S., Ngamcharoen, K., & Likitlersuang, S. (2023). Statistical Characterisation of the Geotechnical Properties of Bangkok Subsoil. Geotechnical and Geological Engineering, 41(3), 2043–2063. https://doi.org/10.1007/s10706-023-02390-z

Niu, W., Guo, B., Li, K., Ren, Z., Zheng, Y., Liu, J., Lin, H., & Men, X. (2024). Cementitous material based stabilization of soft soils by stabilizer: Feasibility and durabiliy assessment. Construction and Building Materials, 425, 136046. https://doi.org/10.1016/j.conbuildmat.2024.136046

O’Kelly, B. C. (2021). Review of Recent Developments and Understanding of Atterberg Limits Determinations. Geotechnics, 1(1), 59–75. https://doi.org/10.3390/geotechnics1010004

Onyelowe, K. C., Mojtahedi, F. F., Azizi, S., Mahdi, H. A., Sujatha, E. R., Ebid, A. M., Darzi, A. G., & Aneke, F. I. (2022). Innovative Overview of SWRC Application in Modeling Geotechnical Engineering Problems. Designs, 6(5), 69. https://doi.org/10.3390/designs6050069

Ouyang, Z., & Mayne, P. W. (2024). Evaluating friction angles for clays: piezocone tests compared with Atterberg limits. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 177(2), 147–157. https://doi.org/10.1680/jgeen.22.00135

Pande, G. N., Pietruszczak, S., & Wang, M. (2020). Role of Gradation Curve in Description of Mechanical Behavior of Unsaturated Soils. International Journal of Geomechanics, 20(2), 4019159. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001551

Pasierb, B., Grodecki, M., & Gwóźdź, R. (2019). Geophysical and geotechnical approach to a landslide stability assessment: a case study. Acta Geophysica, 67(6), 1823–1834. https://doi.org/10.1007/s11600-019-00338-7

Patil, L. B., & Pusadkar, S. S. (2024). Performance of Black Cotton Soil Reinforced with Randomly Distributed Banana Fibers. Indian Geotechnical Conference, 27–33. https://doi.org/10.1007/978-981-97-1745-3_3

Polakowski, C., Ryżak, M., Sochan, A., Beczek, M., Mazur, R., & Bieganowski, A. (2021). Particle Size Distribution of Various Soil Materials Measured by Laser Diffraction—The Problem of Reproducibility. Minerals, 11(5), 465. https://doi.org/10.3390/min11050465

Rakuasa, H., Budnikov, V. V., & Latue, P. C. (2025). Application of GIS Technology for Landslide Prone Area Analysis in Ambon Island, Indonesia. Journal of Geographical Sciences and Education, 3(1), 19–28. https://doi.org/10.69606/geography.v3i1.170

Rasti, A., Adarmanabadi, H. R., Pineda, M., & Reinikainen, J. (2021). Evaluating the Effect of Soil Particle Characterization on Internal Friction Angle. American Journal of Engineering and Applied Sciences, 14(1), 129–138. https://doi.org/10.3844/ajeassp.2021.129.138

Shimobe, S., Karakan, E., & Sezer, A. (2021). Improved dataset for establishing novel relationships between compaction characteristics and physical properties of soils. Bulletin of Engineering Geology and the Environment, 80(11), 8633–8663. https://doi.org/10.1007/s10064-021-02456-3

Shimobe, S., & Spagnoli, G. (2022). A General Overview on the Correlation of Compression Index of Clays with Some Geotechnical Index Properties. Geotechnical and Geological Engineering, 40(1), 311–324. https://doi.org/10.1007/s10706-021-01888-8

Sohel, R., Nie, Z., Ali, S., & Ismail, A. S. (2024). Impact of Industrial Solid Waste on Soil Geotechnical Properties. IOP Conference Series: Earth and Environmental Science, 1335(1), 012030. https://doi.org/10.1088/1755-1315/1335/1/012030

Svensson, D. N., Messing, I., & Barron, J. (2022). An investigation in laser diffraction soil particle size distribution analysis to obtain compatible results with sieve and pipette method. Soil and Tillage Research, 223, 105450. https://doi.org/10.1016/j.still.2022.105450

Usman, F., Nanda, N., & Sumantyo, J. T. S. (2022). Prediction of Ground Surface Deformation Induced by Earthquake on Urban Area Using Machine Learning. Science and Technology Indonesia, 7(4), 435–442. https://doi.org/10.26554/sti.2022.7.4.435-442

Vitali, M., Corvaro, F., Marchetti, B., & Terenzi, A. (2022). Thermodynamic challenges for CO2 pipelines design: A critical review on the effects of impurities, water content, and low temperature. International Journal of Greenhouse Gas Control, 114, 103605. https://doi.org/10.1016/j.ijggc.2022.103605

Wazoh, H. N., & Mallo, S. J. (2021). Implications of the Engineering Geological Properties of Soils in the Implementation of the Greater Jos Master Plan, North Central Nigeria. European Journal of Engineering and Technology Research, 6(5), 118–128. https://doi.org/10.24018/ejeng.2021.6.5.2530

Woldesenbet, T. T., Telila, T. G., & Feyessa, F. F. (2023). Geotechnical and geological investigation of landslide in West Arsi Zone, Ethiopia. Environmental Earth Sciences, 82(18), 427. https://doi.org/10.1007/s12665-023-11133-5

Xie, H., Lu, J., Li, C., Li, M., & Gao, M. (2022). Experimental study on the mechanical and failure behaviors of deep rock subjected to true triaxial stress: A review. International Journal of Mining Science and Technology, 32(5), 915–950. https://doi.org/10.1016/j.ijmst.2022.05.006

Yin, Z., Zhang, Q., Zhang, X., Zhang, J., & Li, X. (2022). Shear strength of grouted clay: comparison of triaxial tests to direct shear tests. Bulletin of Engineering Geology and the Environment, 81(7), 261. https://doi.org/10.1007/s10064-022-02739-3

Author Biographies

Nofrizal, Universitas Andalas

Author Origin : Indonesia

Fauzan, Universitas Andalas

Author Origin : Indonesia

Abdul Hakam, Universitas Andalas

Author Origin : Indonesia

Bambang Istijono, Universitas Andalas

Author Origin : Indonesia

Andriani Setiawan, Universitas Andalas

Author Origin : Indonesia

Aprisal, Universitas Andalas

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Nofrizal, Fauzan, Hakam, A., Istijono, B., Setiawan, A., & Aprisal. (2025). Laboratory Study of Geotechnical Characteristics of Soil in Landslide-Prone Zone in Talamau District, West Pasaman Regency. Jurnal Penelitian Pendidikan IPA, 11(8), 298–308. https://doi.org/10.29303/jppipa.v11i8.12046