Optimization of Amine-Based Absorbent Solutions for Biogas Purification from Cow Manure
DOI:
10.29303/jppipa.v11i11.12070Published:
2025-11-25Downloads
Abstract
The growing demand for energy and the depletion of fossil fuel resources have increased the urgency of finding renewable and sustainable energy sources. Biogas produced from cow manure through anaerobic digestion offers a promising option because it can turn agricultural waste into usable energy. However, raw biogas contains a high proportion of carbon dioxide (CO₂), which reduces its calorific value and must be removed to improve its quality. This research evaluates the effectiveness of four amine based absorbents, namely monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA) and methyldiethanolamine (MDEA), for purifying biogas in a packed absorption column. The column was filled with Pall rings to enhance gas and liquid contact and operated at room temperature (around 25 °C) and atmospheric pressure with a constant flow rate of biogas. Each amine solution was prepared at concentrations between 10% and 50%. The methane and carbon dioxide contents were measured before and after the purification process to assess removal efficiency. The findings indicate that MEA achieved the highest level of carbon dioxide removal, raising methane concentration from 58.3% to 78.2% at a 50% solution. DEA also showed good performance, although not as high as MEA, while TEA and MDEA produced lower removal efficiencies. These results demonstrate that amine based absorption can significantly improve the quality of biogas. In summary, MEA proved to be the most effective absorbent under the conditions tested, offering a practical and cost effective approach for small to medium scale biogas purification systems. These findings provide useful information for improving chemical absorption techniques to support wider use of renewable energy.
Keywords:
Amine solutions Biogas purification Chemical absorption Methane enrichment Packed bed columnReferences
Abdeen, F. R. H., Mel, M., Jami, M. S., Ihsan, S. I., & Ismail, A. F. (2016). A review of chemical absorption of carbon dioxide for biogas upgrading. In Chinese Journal of Chemical Engineering (Vol. 24, Issue 6, pp. 693–702). Chemical Industry Press. https://doi.org/10.1016/j.cjche.2016.05.006 DOI: https://doi.org/10.1016/j.cjche.2016.05.006
Akkarawatkhoosith, N., Kaewchada, A., & Jaree, A. (2019). High-throughput CO2 capture for biogas purification using monoethanolamine in a microtube contactor. Journal of the Taiwan Institute of Chemical Engineers, 98, 113–123. https://doi.org/10.1016/j.jtice.2018.05.002 DOI: https://doi.org/10.1016/j.jtice.2018.05.002
Arachchige, U., Arachchige, U. S. P. R., & Melaaen, M. C. (2012). Selection of Packing Material for Gas Absorption. European Journal of Scientific Research, 87(September 2012).
Baena-Moreno, F. M., le Saché, E., Pastor-Pérez, L., & Reina, T. R. (2020). Membrane-based technologies for biogas upgrading: a review. In Environmental Chemistry Letters (Vol. 18, Issue 5, pp. 1649–1658). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s10311-020-01036-3 DOI: https://doi.org/10.1007/s10311-020-01036-3
Daiyan, I. N., Kalsum, L., & Bow, Y. (2020). Capturing CO2 from Biogas by MEA (Monoethanolamine) using Packed Bed Scrubber. Jurnal Teknik Kimia Dan Lingkungan, 4(2). https://doi.org/10.33795/jtkl.v4i2.157
Duan, X., Liu, Y., Lai, M. C., Guo, G., Liu, J., Chen, Z., & Deng, B. (2019). Effects of natural gas composition and compression ratio on the thermodynamic and combustion characteristics of a heavy-duty lean-burn SI engine fueled with liquefied natural gas. Fuel, 254. https://doi.org/10.1016/j.fuel.2019.115733 DOI: https://doi.org/10.1016/j.fuel.2019.115733
Fatin, M. H., Husaini, A., & Kalsum, L. (2021). Effect of Adding Palm Oil Mill Effluent (POME) and Slurry on Biogas From Cow Manure to Produced Methane Gas. DOI: https://doi.org/10.2991/ahe.k.210205.014
Fourqoniah, F., Kalsum, L., & Yulianti, S. (2023). Biogas Purification by Adsorption Method Using Activated Carbon and Zeolite Adsorbents. Equilibrium Journal of Chemical Engineering, 7(2). https://doi.org/10.20961/equilibrium.v7i2.77835 DOI: https://doi.org/10.20961/equilibrium.v7i2.77835
Francisco López, A., Lago Rodríguez, T., Faraji Abdolmaleki, S., Galera Martínez, M., & Bello Bugallo, P. M. (2024). From Biogas to Biomethane: An In-Depth Review of Upgrading Technologies That Enhance Sustainability and Reduce Greenhouse Gas Emissions. In Applied Sciences (Switzerland) (Vol. 14, Issue 6). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/app14062342 DOI: https://doi.org/10.3390/app14062342
Gürsan, C., & de Gooyert, V. (2021). The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition? In Renewable and Sustainable Energy Reviews (Vol. 138). Elsevier Ltd. https://doi.org/10.1016/j.rser.2020.110552 DOI: https://doi.org/10.1016/j.rser.2020.110552
Huertas, J. I., Giraldo, N., & Izquierdo, S. (n.d.). 7 Removal of H 2 S and CO 2 from Biogas by Amine Absorption. www.intechopen.com
Jensen, I. G., & Skovsgaard, L. (2017). The impact of CO2-costs on biogas usage. Energy, 134, 289–300. https://doi.org/10.1016/j.energy.2017.06.019 DOI: https://doi.org/10.1016/j.energy.2017.06.019
Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Biogas Production and Applications in the Sustainable Energy Transition. Journal of Energy, 2022, 1–43. https://doi.org/10.1155/2022/8750221 DOI: https://doi.org/10.1155/2022/8750221
Kadarjono, A., Yusnitha, E., Sartono, A., Santosa, D., Diah, P., Pusat, W., Bahan, T., Nuklir -Batan, B., Puspiptek, K., Gd, S., & Selatan, T. (2017). Pengaruh Jenis Packing pada Menara Packed-Bed Absorber dalam Penyerapan Gas Nox. 25-27.
Kalsum, L., & Hasan, A. (2025). Analysis of Flow Rate and Concentration of Mono Ethanol Amine (MEA) in the Biogas Purification Using Absorption Column with Pall Ring Packing. 15(3). DOI: https://doi.org/10.18517/ijaseit.15.3.20712
Kalsum, L., Rusdianasari, & Hasan, A. (2022). The Effect of the Packing Flow Area and Biogas Flow Rate on Biogas Purification in Packed Bed Scrubber. Journal of Ecological Engineering, 23(11), 49–56. https://doi.org/10.12911/22998993/153569 DOI: https://doi.org/10.12911/22998993/153569
Kalsum, L., Rusdianasari, R., Bow, Y., Hasan, Y., Putra, A. A., Diana, R., & Pertiwi, G. (2023). Enriching Methane Content from an Anaerobic Digestion Process of Cow Manure (pp. 68–77). https://doi.org/10.2991/978-94-6463-118-0_8 DOI: https://doi.org/10.2991/978-94-6463-118-0_8
Kapoor, R., Ghosh, P., Tyagi, B., Vijay, V. K., Vijay, V., Thakur, I. S., Kamyab, H., Nguyen, D. D., & Kumar, A. (2020). Advances in biogas valorization and utilization systems: A comprehensive review. Journal of Cleaner Production, 273. https://doi.org/10.1016/j.jclepro.2020.123052 DOI: https://doi.org/10.1016/j.jclepro.2020.123052
Konkol, I., Cebula, J., Świerczek, L., Piechaczek-Wereszczyńska, M., & Cenian, A. (2022). Biogas Pollution and Mineral Deposits Formed on the Elements of Landfill Gas Engines. Materials, 15(7). https://doi.org/10.3390/ma15072408 DOI: https://doi.org/10.3390/ma15072408
Kotamreddy, G., Hughes, R., Bhattacharyya, D., Stolaroff, J., Hornbostel, K., Matuszewski, M., & Omell, B. (2020). Process Modeling and Techno-Economic Analysis of a CO2 Capture Process Using Fixed Bed Reactors with a Microencapsulated Solvent Energy & Fuels. DOI: https://doi.org/10.1021/acs.energyfuels.9b01255
Kumar Gupta, V., & Tuohy, M. G. (2020.). Biofuel and Biorefinery Technologies Volume 6 Series editors. http://www.springer.com/series/11833
Maile, O. I., Tesfagiorgis, H., & Muzenda, E. (2017). The potency of monoethanolamine in biogas purification and upgrading. South African Journal of Chemical Engineering, 24, 122–127. https://doi.org/10.1016/j.sajce.2017.06.004 DOI: https://doi.org/10.1016/j.sajce.2017.06.004
Mekonen, E. A., Mekonnen, Y. T., & Fatoba, S. O. (2023). Thermodynamic prediction of biogas production and combustion: The spontaneity and energy conversion efficiency from photosynthesis to combustion. Scientific African, 21, e01776. https://doi.org/10.1016/J.SCIAF.2023.E01776 DOI: https://doi.org/10.1016/j.sciaf.2023.e01776
Mohammad, N., Mohamad Ishak, W. W., Mustapa, S. I., & Ayodele, B. V. (2021). Natural Gas as a Key Alternative Energy Source in Sustainable Renewable Energy Transition: A Mini Review. In Frontiers in Energy Research (Vol. 9). Frontiers Media S.A. https://doi.org/10.3389/fenrg.2021.625023 DOI: https://doi.org/10.3389/fenrg.2021.625023
Muntaha, N., Rain, M. I., Goni, L. K. M. O., Shaikh, M. A. A., Jamal, M. S., & Hossain, M. (2022). A Review on Carbon Dioxide Minimization in Biogas Upgradation Technology by Chemical Absorption Processes. In ACS Omega (Vol. 7, Issue 38, pp. 33680–33698). American Chemical Society. https://doi.org/10.1021/acsomega.2c03514 DOI: https://doi.org/10.1021/acsomega.2c03514
Nur Daiyan, I., Kalsum, L., & Bow, Y. (2020). Capturing CO 2 from Biogas by MEA (Monoethanolamine) using Packed Bed Scrubber. 2020(2), 105–112. www.jtkl.polinema.ac.id DOI: https://doi.org/10.33795/jtkl.v4i2.157
Ochedi, F. O., Yu, J., Yu, H., Liu, Y., & Hussain, A. (2021). Carbon dioxide capture using liquid absorption methods: a review. In Environmental Chemistry Letters (Vol. 19, Issue 1, pp. 77–109). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s10311-020-01093-8 DOI: https://doi.org/10.1007/s10311-020-01093-8
Putra, A. A., Kalsum, L., & Hasan, A. (2023). CO2 and H2S Absorption in Tofu Liquid Waste Biogas using Packed Bed Scrubber with Variation of MEA Concentration and Flow Rate. International Journal of Research in Vocational Studies (IJRVOCAS), 3(2), 23–28. https://doi.org/10.53893/ijrvocas.v3i2.204 DOI: https://doi.org/10.53893/ijrvocas.v3i2.204
Ramesh, P. L. N. ., & Moorthi, M. . (2017a). Third IEEE International Conference on Advances in Electrical, Electronics, Information, Communication and Bio Informatics : AEEICB - 2017 : 27th & 28th February 2017. IEEE.
Ramesh, P. L. N. ., & Moorthi, M. . (2017b). Third IEEE International Conference on Advances in Electrical, Electronics, Information, Communication and Bio Informatics : AEEICB - 2017 : 27th & 28th February 2017. IEEE.
Schellevis, H. M., van Schagen, T. N., & Brilman, D. W. F. (2021). Process optimization of a fixed bed reactor system for direct air capture. International Journal of Greenhouse Gas Control, 110. https://doi.org/10.1016/j.ijggc.2021.103431 DOI: https://doi.org/10.1016/j.ijggc.2021.103431
Sengur, O., Akgul, D., & Calli, B. (2024). In situ methane enrichment with vacuum application to produce biogas with higher methane content. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-024-33881-y DOI: https://doi.org/10.1007/s11356-024-33881-y
Sihlangu, E., Luseba, D., Regnier, T., Magama, P., Chiyanzu, I., & Nephawe, K. A. (2024). Investigating Methane, Carbon Dioxide, Ammonia, and Hydrogen Sulphide Content in Agricultural Waste during Biogas Production. Sustainability (Switzerland), 16(12). https://doi.org/10.3390/su16125145 DOI: https://doi.org/10.3390/su16125145
Singhal, S., Agarwal, S., Arora, S., Sharma, P., & Singhal, N. (2017). Upgrading techniques for transformation of biogas to bio-CNG: a review. In International Journal of Energy Research (Vol. 41, Issue 12, pp. 1657–1669). John Wiley and Sons Ltd. https://doi.org/10.1002/er.3719 DOI: https://doi.org/10.1002/er.3719
Soehartanto, T., Wahyuono, R. A., Aisyah, P. Y., & Ubaidillah, B. (2021). A Novel Simple Dipping-Nebulizing Water Absorption for Biogas Purification. International Journal of Technology, 12(1), 186–194. https://doi.org/10.14716/ijtech.v12i1.4245 DOI: https://doi.org/10.14716/ijtech.v12i1.4245
Tamhankar, Y., King, B., Whiteley, J., Cai, T., McCarley, K., Resetarits, M., & Aichele, C. (2015). Spray absorption of CO2 into monoethanolamine: Mass transfer coefficients, dropsize, and planar surface area. Chemical Engineering Research and Design, 104, 376–389. https://doi.org/10.1016/J.CHERD.2015.08.012 DOI: https://doi.org/10.1016/j.cherd.2015.08.012
Tantikhajorngosol, P., Laosiripojana, N., Jiraratananon, R., & Assabumrungrat, S. (2019). Physical absorption of CO2 and H2S from synthetic biogas at elevated pressures using hollow fiber membrane contactors: The effects of Henry’s constants and gas diffusivities. International Journal of Heat and Mass Transfer, 128. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.076 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.076
Tetteh, E., Ansah Amano, K. O., Asante-Sackey, D., & Armah, E. (2018). Response surface optimisation of biogas potential in co-digestion of Miscanthus Fuscus And Cow Dung. International Journal of Technology, 9(5), 944–954. https://doi.org/10.14716/ijtech.v9i5.1467 DOI: https://doi.org/10.14716/ijtech.v9i5.1467
Tufaner, F., & Avşar, Y. (2016). Effects of co-substrate on biogas production from cattle manure: a review. In International Journal of Environmental Science and Technology (Vol. 13, Issue 9, pp. 2303–2312). Center for Environmental and Energy Research and Studies. https://doi.org/10.1007/s13762-016-1069-1 DOI: https://doi.org/10.1007/s13762-016-1069-1
Ullah Khan, I., Hafiz Dzarfan Othman, M., Hashim, H., Matsuura, T., Ismail, A. F., Rezaei-DashtArzhandi, M., & Wan Azelee, I. (2017). Biogas as a renewable energy fuel – A review of biogas upgrading, utilisation and storage. In Energy Conversion and Management (Vol. 150, pp. 277–294). Elsevier Ltd. https://doi.org/10.1016/j.enconman.2017.08.035 DOI: https://doi.org/10.1016/j.enconman.2017.08.035
Xiao, M., Yang, Q., Liang, Z., Puxty, G., Feron, P., & Conway, W. (2018). Advanced designer amines for CO 2 capture: interrogating speciation and physical properties. DOI: https://doi.org/10.2139/ssrn.3366329
Yang, J., Yu, X., Yan, J., & Tu, S. T. (2014). CO2 capture using amine solution mixed with ionic liquid. Industrial and Engineering Chemistry Research, 53(7), 2790–2799. https://doi.org/10.1021/ie4040658 DOI: https://doi.org/10.1021/ie4040658
Yousef, A. M., El-Maghlany, W. M., Eldrainy, Y. A., & Attia, A. (2018). New approach for biogas purification using cryogenic separation and distillation process for CO2 capture. Energy, 156, 328–351. https://doi.org/10.1016/J.ENERGY.2018.05.106 DOI: https://doi.org/10.1016/j.energy.2018.05.106
License
Copyright (c) 2025 Elbi Zalita Pramadani Baros, Leila Kalsum, Rusdianasari

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






