Effectiveness of Secang Wood Isolate in Combination with Amoxicillin Against MRSA
DOI:
10.29303/jppipa.v11i10.12206Published:
2025-10-25Downloads
Abstract
Bacterial resistance to antibiotics is a global health threat, with Methicillin-Resistant Staphylococcus aureus (MRSA) as one of the most deadly pathogens. MRSA is resistant to methicillin and other β-lactam antibiotics, causing therapy failure and increased mortality up to 64% higher than non-resistant bacterial infections. This condition urges the development of new therapeutic strategies. This study focuses on sappan wood (Caesalpinia sappan L.), which is rich in compounds such as brazilin (the main component), flavonoids, and tannins, which have been reported to have significant antibacterial activity against various Gram-positive and Gram-negative pathogenic bacteria, including Staphylococcus aureus. Brazilin, a flavonoid, specifically exhibits inhibitory activity against MRSA. Based on the urgency of MRSA resistance and the pharmacological potential of sappan wood, this study aims to test the effectiveness of sappan wood isolation combined with amoxicillin against MRSA. The research method is a laboratory study that focuses on extract preparation, compound isolation, and in vitro antibacterial activity testing. The core results of the study showed that sappan wood extract (Caesalpinia sappan L.), which was identified to contain active compounds such as brazilein, was successfully extracted with a yield of 10.15%. Most importantly, the combination of sappanwood extract with amoxicillin showed a strong synergistic effect, as evidenced by the large inhibition zone diameter (up to 30.40±0.75 mm) against MRSA bacteria.
Keywords:
Amoxicillin MRSA Secang wood extract SynergyReferences
Aba, N. M., Hidayat, M., & Yusuf, S. S. (2021). UJI AKTIVITAS EKSTRAK DAUN SECANG (Caesalpinia sappan L) TERHADAP PERTUMBUHAN BAKTERI ESCHERICHIA COLI. Journal of Experimental and Clinical Pharmacy (JECP), 1(2). https://doi.org/10.52365/jecp.v1i2.239
Abullais Saquib, S., Abdullah AlQahtani, N., Ahmad, I., Arora, S., Mohammed Asif, S., Ahmed Javali, M., & Nisar, N. (2021). Synergistic antibacterial activity of herbal extracts with antibiotics on bacteria responsible for periodontitis. The Journal of Infection in Developing Countries, 15(11), 1685–1693. https://doi.org/10.3855/jidc.14904
Ambari, Y., Hapsari, F. N. D., Ningsih, A. W., Nurrosyidah, I. H., & Sinaga, B. (2020). Studi Formulasi Sediaan Lip Balm Ekstrak Kayu Secang (Caesalpinia sappan L.) dengan Variasi Beeswax. Journal of Islamic Pharmacy, 5(2), 36–45. https://doi.org/10.18860/jip.v5i2.10434
Artati, A., Pratama, R., Nurisyah, N., Asyikin, A., Abdullah, T., Daswi, D. R., & Dewi, R. (2025). Phytochemical Testing, Antioxidant Activity and Determination of Specific and Non-Specific Parameters of Secang Wood Extract (Caesalpinia sappan L.). Jurnal Penelitian Pendidikan IPA, 11(2), 918–929. https://doi.org/10.29303/jppipa.v11i2.10563
Asevedo, E. A., Ramos Santiago, L., Kim, H. J., Syahputra, R. A., Park, M. N., Ribeiro, R. I. M. A., & Kim, B. (2025). Unlocking the therapeutic mechanism of Caesalpinia sappan: A comprehensive review of its antioxidant and anti-cancer properties, ethnopharmacology, and phytochemistry. Frontiers in Pharmacology, 15, 1514573. https://doi.org/10.3389/fphar.2024.1514573
Atta, S., Waseem, D., Fatima, H., Naz, I., Rasheed, F., & Kanwal, N. (2023). Antibacterial potential and synergistic interaction between natural polyphenolic extracts and synthetic antibiotic on clinical isolates. Saudi Journal of Biological Sciences, 30(3), 103576. https://doi.org/10.1016/j.sjbs.2023.103576
Bao, M., Zhang, L., Liu, B., Li, L., Zhang, Y., Zhao, H., Ji, X., Chen, Q., Hu, M., Bai, J., Pang, G., Yi, J., Tan, Y., & Lu, C. (2020). Synergistic Effects of Anti-MRSA Herbal Extracts Combined with Antibiotics. Future Microbiology, 15(13), 1265–1276. https://doi.org/10.2217/fmb-2020-0001
Budianu, M.-A., Ciurea, C. N., Moraru, L., & Voidăzan, S. (2025). Burden of Healthcare-Associated Infections and Antimicrobial Resistance in a Romanian Cardiovascular and Transplant Center: Factors Associated with Mortality. Antibiotics, 14(9), 926. https://doi.org/10.3390/antibiotics14090926
Chagas, M. D. S. S., Behrens, M. D., Moragas-Tellis, C. J., Penedo, G. X. M., Silva, A. R., & Gonçalves-de-Albuquerque, C. F. (2022). Flavonols and Flavones as Potential anti‐Inflammatory, Antioxidant, and Antibacterial Compounds. Oxidative Medicine and Cellular Longevity, 2022(1), 9966750. https://doi.org/10.1155/2022/9966750
Chomnawang, M. T., Surassmo, S., Wongsariya, K., & Bunyapraphatsara, N. (2009). Antibacterial Activity of Thai Medicinal Plants against Methicillin-resistant Staphylococcus aureus. Fitoterapia, 80(2), 102–104. https://doi.org/10.1016/j.fitote.2008.10.007
Galgano, M., Pellegrini, F., Catalano, E., Capozzi, L., Del Sambro, L., Sposato, A., Lucente, M. S., Vasinioti, V. I., Catella, C., Odigie, A. E., Tempesta, M., Pratelli, A., & Capozza, P. (2025). Acquired Bacterial Resistance to Antibiotics and Resistance Genes: From Past to Future. Antibiotics, 14(3), 222. https://doi.org/10.3390/antibiotics14030222
Górniak, I., Bartoszewski, R., & Króliczewski, J. (2019). Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews, 18(1), 241–272. https://doi.org/10.1007/s11101-018-9591-z
Hajhamed, N. M., Mohamed, N. S., Abdalla, A. E., Ebrahim, R. M. A., Mohammed, S. I., Bakheit, A. M., Azhary, A., Ahmed, A. E., Abdelbagi, A., Ali, M. S. E., Omer, R. A., Siddig, E. E., Ahmed, A., Hamida, M. E., & Salim, M. A. (2025). Current status and recent trends in innovative tactics and the One Health approach to address the challenge of methicillin-resistant Staphylococcus aureus infections: A comprehensive review. Discover Medicine, 2(1), 109. https://doi.org/10.1007/s44337-025-00300-1
Hartman, K., Świerczyńska, M., Wieczorek, A., Baszuk, P., Wojciechowska-Koszko, I., Garbacz, K., Sienkiewicz, M., & Kwiatkowski, P. (2025). Preliminary Evaluation of the Synergistic Antibacterial Effects of Selected Commercial Essential Oil Compounds Against Methicillin-Resistant Staphylococcus aureus ATCC 43300. Antibiotics, 14(7), 733. https://doi.org/10.3390/antibiotics14070733
Hassan, A., Akmal, Z., & Khan, N. (2020). The Phytochemical Screening and Antioxidants Potential of Schoenoplectus triqueter L. Palla. Journal of Chemistry, 2020, 1–8. https://doi.org/10.1155/2020/3865139
He, Q., Meneely, J., Grant, I. R., Chin, J., Fanning, S., & Situ, C. (2024). Phytotherapeutic potential against MRSA: Mechanisms, synergy, and therapeutic prospects. Chinese Medicine, 19(1), 89. https://doi.org/10.1186/s13020-024-00960-8
Jamaddar, S., Sarkar, C., Akter, S., Mubarak, M. S., El-Nashar, H. A. S., El-Shazly, M., & Islam, M. T. (2023). Brazilin: An updated literature-based review on its promising therapeutic approaches and toxicological studies. South African Journal of Botany, 158, 118–132. https://doi.org/10.1016/j.sajb.2023.04.053
Jeong, J.-Y., Jung, I.-G., Yum, S.-H., & Hwang, Y.-J. (2023). In Vitro Synergistic Inhibitory Effects of Plant Extract Combinations on Bacterial Growth of Methicillin-Resistant Staphylococcus aureus. Pharmaceuticals, 16(10), 1491. https://doi.org/10.3390/ph16101491
Jhumur, N. T., Jamal, A. H. M. S. I. M., Islam, Md. H., Mukta, S. Y., Uddin, Md. R., Al-Mansur, M. A., Ahamed, K. U., & Siddiqi, M. M. A. (2025). In silico investigation, phytochemical profiles and potential Biological approaches of natural products isolated from Canarium resiniferum bark extract. In Silico Research in Biomedicine, 1, 100076. https://doi.org/10.1016/j.insi.2025.100076
Khan, R. T., Sharma, V., Khan, S. S., & Rasool, S. (2024). Prevention and potential remedies for antibiotic resistance: Current research and future prospects. Frontiers in Microbiology, 15, 1455759. https://doi.org/10.3389/fmicb.2024.1455759
Kuok, C.-F., Hoi, S.-O., Hoi, C.-F., Chan, C.-H., Fong, I.-H., Ngok, C.-K., Meng, L.-R., & Fong, P. (2017). Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus: A computational and experimental study. Experimental Biology and Medicine, 242(7), 731–743. https://doi.org/10.1177/1535370216689828
Lakbar, I., Medam, S., Ronflé, R., Cassir, N., Delamarre, L., Hammad, E., Lopez, A., Lepape, A., Machut, A., Boucekine, M., Zieleskiewicz, L., Baumstarck, K., Savey, A., Leone, M., REA RAISIN Study Group, Alfandari, S., Bailly, S., Bajolet, O., Baldesi, O., … Vanhems, P. (2021). Association between mortality and highly antimicrobial-resistant bacteria in intensive care unit-acquired pneumonia. Scientific Reports, 11(1), 16497. https://doi.org/10.1038/s41598-021-95852-4
Lam, T.-P., Tran, N.-V. N., Pham, L.-H. D., Lai, N. V.-T., Dang, B.-T. N., Truong, N.-L. N., Nguyen-Vo, S.-K., Hoang, T.-L., Mai, T. T., & Tran, T.-D. (2024). Flavonoids as dual-target inhibitors against α-glucosidase and α-amylase: A systematic review of in vitro studies. Natural Products and Bioprospecting, 14(1), 4. https://doi.org/10.1007/s13659-023-00424-w
MacPherson, C. W., Mathieu, O., Tremblay, J., Champagne, J., Nantel, A., Girard, S.-A., & Tompkins, T. A. (2018). Gut Bacterial Microbiota and its Resistome Rapidly Recover to Basal State Levels after Short-term Amoxicillin-Clavulanic Acid Treatment in Healthy Adults. Scientific Reports, 8(1), 11192. https://doi.org/10.1038/s41598-018-29229-5
Mathe, E., Sethoga, L., Mapfumari, S., Adeniran, O., Mokgotho, P., Shai, J., & Gololo, S. (2024). Phytochemical Screening and Characterization of Volatile Compounds from Three Medicinal Plants with Reported Anticancer Properties Using GC-MS. Life, 14(11), 1375. https://doi.org/10.3390/life14111375
Muteeb, G., Rehman, M. T., Shahwan, M., & Aatif, M. (2023). Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals, 16(11), 1615. https://doi.org/10.3390/ph16111615
Ngamwonglumlert, L., Devahastin, S., Chiewchan, N., & Raghavan, G. S. V. (2020). Color and molecular structure alterations of brazilein extracted from Caesalpinia sappan L. under different pH and heating conditions. Scientific Reports, 10(1), 12386. https://doi.org/10.1038/s41598-020-69189-3
Okoduwa, S. I. R., Abdulwaliyu, I., Igiri, B. E., Arekemase, S. O., Okoduwa, U. J., Itiat, J. F., Egbule, M. N., & Mustapha, R. A. (2024). Multi-therapeutic potential of flavonoids as an essential component in nutraceuticals for the treatment and management of human diseases. Phytomedicine Plus, 4(2), 100558. https://doi.org/10.1016/j.phyplu.2024.100558
Sartini, S., Djide, M. N., Amir, M. N., & Permana, A. D. (2020). Phenolic-rich green tea extract increases the antibacterial activity of amoxicillin against Staphylococcus aureus by in vitro and ex vivo studies. Journal of Pharmacy & Pharmacognosy Research, 8(1), 491–500. https://doi.org/10.56499/jppres20.844_8.6.491
Sazali, A., Adriadi, A., Yusuf, A. I., Maritsa, H. U., Siringo-ringo, A. J., & Kise, H. F. (2024). AKTIVITAS ANTIBAKTERI EKSTRAK KAYU SECANG ( Caesalpinia sappan L.) TERHADAP BAKTERI Edwardsiella tarda DAN Edwardsiella ictaluri PATOGEN BUDIDAYA PERIKANAN. Berita Biologi, 23(1), 41–48. https://doi.org/10.55981/beritabiologi.2024.2606
Sodhi, K. K., Kumar, M., & Singh, D. K. (2021). Insight into the amoxicillin resistance, ecotoxicity, and remediation strategies. Journal of Water Process Engineering, 39, 101858. https://doi.org/10.1016/j.jwpe.2020.101858
Spatz, M., Da Costa, G., Ventin-Holmberg, R., Planchais, J., Michaudel, C., Wang, Y., Danne, C., Lapiere, A., Michel, M.-L., Kolho, K.-L., Langella, P., Sokol, H., & Richard, M. L. (2023). Antibiotic treatment using amoxicillin-clavulanic acid impairs gut mycobiota development through modification of the bacterial ecosystem. Microbiome, 11(1), 73. https://doi.org/10.1186/s40168-023-01516-y
Stachelska, M. A., Karpiński, P., & Kruszewski, B. (2025). A Comprehensive Review of Biological Properties of Flavonoids and Their Role in the Prevention of Metabolic, Cancer and Neurodegenerative Diseases. Applied Sciences, 15(19), 10840. https://doi.org/10.3390/app151910840
Tayeb, S., Alharbi, J., Alattas, B., Alotaibi, D., Althibaiti, N., Alharbi, J., SafirAldeen, A., Alqurashi, I., & Wali, S. (2025). Promising Future of Novel Beta-Lactam Antibiotics Against Bacterial Resistance. Drug Design, Development and Therapy, Volume 19, 9185–9197. https://doi.org/10.2147/DDDT.S551862
Uddin, T. M., Chakraborty, A. J., Khusro, A., Zidan, B. R. M., Mitra, S., Emran, T. B., Dhama, K., Ripon, Md. K. H., Gajdács, M., Sahibzada, M. U. K., Hossain, Md. J., & Koirala, N. (2021). Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health, 14(12), 1750–1766. https://doi.org/10.1016/j.jiph.2021.10.020
Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G., Emwas, A.-H., & Jaremko, M. (2020). Important Flavonoids and Their Role as a Therapeutic Agent. Molecules, 25(22), 5243. https://doi.org/10.3390/molecules25225243
Vij, T., Anil, P. P., Shams, R., Dash, K. K., Kalsi, R., Pandey, V. K., Harsányi, E., Kovács, B., & Shaikh, A. M. (2023). A Comprehensive Review on Bioactive Compounds Found in Caesalpinia sappan. Molecules, 28(17), 6247. https://doi.org/10.3390/molecules28176247
Wang, H., Hu, S., Pei, Y., & Sun, H. (2024). Nordalbergin Synergizes with Novel β-Lactam Antibiotics against MRSA Infection. International Journal of Molecular Sciences, 25(14), 7704. https://doi.org/10.3390/ijms25147704
Wrońska, N., Szlaur, M., Zawadzka, K., & Lisowska, K. (2022). The Synergistic Effect of Triterpenoids and Flavonoids—New Approaches for Treating Bacterial Infections? Molecules, 27(3), 847. https://doi.org/10.3390/molecules27030847
Zhang, F., & Cheng, W. (2022). The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies. Antibiotics, 11(9), 1215. https://doi.org/10.3390/antibiotics11091215
License
Copyright (c) 2025 Besse Yuliana, Husnil Ania, Habiburrahim

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






