Vol. 11 No. 9 (2025): September
Open Access
Peer Reviewed

Supply Chain Management Hierarchy Model to Support SDGs and Food Security, Using the Analytical Hierarchy Process Approach

Authors

Arie Wahyu Prananta , Indra Jaya Kusuma Wardana , I Wayan Suyadnya , Iqbal Mahcfud Fauzi

DOI:

10.29303/jppipa.v11i9.12301

Published:

2025-09-25

Downloads

Abstract

Current global challenges, such as climate uncertainty and population growth, demand robust and sustainable supply chain management systems. Existing management models often fail to comprehensively integrate sustainability dimensions, particularly in supporting the Sustainable Development Goals (SDGs), particularly those related to food security. By combining the principles of sustainability and resilience, the proposed model is expected to serve as a guide for stakeholders in making strategic decisions to achieve a more efficient, sustainable, and crisis-adaptive supply chain, while contributing significantly to the achievement of the SDGs. The fisheries supply chain faces serious challenges in transparency, traceability, and distribution inequality, which directly impact the achievement of the Sustainable Development Goals (SDGs), particularly SDG 2 (Zero Hunger) and SDG 12 (Responsible Consumption and Production). Blockchain technology presents an innovative solution to improve data integrity and logistics efficiency.  This study aims to analyze the most prioritized blockchain implementation strategies to strengthen food security in the fisheries industry. Using the Analytical Hierarchy Process (AHP) approach, weighting of the criteria and sub-criteria influencing blockchain adoption was carried out. The results indicate that data transparency and product traceability are the top priorities in the supply chain. This study provides strategic recommendations for policymakers and industry players to accelerate the blockchain-based digital transformation of the marine and fisheries sector.

Keywords:

AHP Blockchain Fisheries Food security SDGs Supply chain

References

Abiri, R., Rizan, N., Balasundram, S. K., Shahbazi, A. B., & Abdul-Hamid, H. (2023). Application of digital technologies for ensuring agricultural productivity. Heliyon, 9(12), e22601. https://doi.org/10.1016/j.heliyon.2023.e22601

Ahmed, H. F., Hosseinian-Far, A., Sarwar, D., & Khandan, R. (2024). Supply Chain Complexity and Its Impact on Knowledge Transfer: Incorporating Sustainable Supply Chain Practices in Food Supply Chain Networks. Logistics, 8(1), 5. https://doi.org/10.3390/logistics8010005

Akhrouf, M., & Derghoum, M. (2023). Use Of A Multi-Criteria Decision Support Model Based On The AHP Method For The Selection Of Health Infrastructure Projects. International Journal of the Analytic Hierarchy Process, 15(1). https://doi.org/10.13033/ijahp.v15i1.1040

Akhtaruzzaman Khan, M., Emran Hossain, Md., Shahaab, A., & Khan, I. (2022). ShrimpChain: A blockchain-based transparent and traceable framework to enhance the export potentiality of Bangladeshi shrimp. Smart Agricultural Technology, 2, 100041. https://doi.org/10.1016/j.atech.2022.100041

Apeh, O. O., & Nwulu, N. I. (2025). Enhancing transparency and efficiency in green energy management through blockchain: A comprehensive bibliometric analysis. Energy Nexus, 18, 100405. https://doi.org/10.1016/j.nexus.2025.100405

Arteaga-Cabrera, E., Ramírez-Márquez, C., Sánchez-Ramírez, E., Segovia-Hernández, J. G., Osorio-Mora, O., & Gómez-Salazar, J. A. (2025). Advancing Optimization Strategies in the Food Industry: From Traditional Approaches to Multi-Objective and Technology-Integrated Solutions. Applied Sciences, 15(7), 3846. https://doi.org/10.3390/app15073846

Banaeian Far, S., Imani Rad, A., & Rajabzadeh Asaar, M. (2023). Blockchain and its derived technologies shape the future generation of digital businesses: A focus on decentralized finance and the Metaverse. Data Science and Management, 6(3), 183–197. https://doi.org/10.1016/j.dsm.2023.06.002

Banasik, A., Bloemhof-Ruwaard, J. M., Kanellopoulos, A., Claassen, G. D. H., & Van Der Vorst, J. G. A. J. (2018). Multi-criteria decision making approaches for green supply chains: A review. Flexible Services and Manufacturing Journal, 30(3), 366–396. https://doi.org/10.1007/s10696-016-9263-5

Barbosa Junior, M., Pinheiro, E., Sokulski, C. C., Ramos Huarachi, D. A., & De Francisco, A. C. (2022). How to Identify Barriers to the Adoption of Sustainable Agriculture? A Study Based on a Multi-Criteria Model. Sustainability, 14(20), 13277. https://doi.org/10.3390/su142013277

Boumaiza, A. (2025). Advancing Sustainable Investment Efficiency and Transparency Through Blockchain-Driven Optimization. Sustainability, 17(5), 2000. https://doi.org/10.3390/su17052000

Clapp, J., Moseley, W. G., Burlingame, B., & Termine, P. (2022). Viewpoint: The case for a six-dimensional food security framework. Food Policy, 106, 102164. https://doi.org/10.1016/j.foodpol.2021.102164

Cromwell, J., Turkson, C., Dora, M., & Yamoah, F. A. (2025). Digital technologies for traceability and transparency in the global fish supply chains: A systematic review and future directions. Marine Policy, 178, 106700. https://doi.org/10.1016/j.marpol.2025.106700

Fauziana, D. R., Marimin, Suwarsinah, H. K., & Prasetio, E. A. (2023). What factors impact the adoption of postharvest loss-reduction technologies in mangosteen supply chain? Journal of Open Innovation: Technology, Market, and Complexity, 9(3), 100102. https://doi.org/10.1016/j.joitmc.2023.100102

Francis, J., Cross, D., Schultz, A., Armstrong, D., Nguyen, R., & Branch-Smith, C. (2020). Developing a smartphone application to support social connectedness and wellbeing in young people with cystic fibrosis. Journal of Cystic Fibrosis, 19(2), 277–283. https://doi.org/10.1016/j.jcf.2019.12.011

Galanakis, C. M., Daskalakis, M. Ι., Galanakis, I., Gallo, A., Marino, E. A. E., Chalkidou, A., & Agrafioti, E. (2025). A systematic framework for understanding food security drivers and their interactions. Discover Food, 5(1), 178. https://doi.org/10.1007/s44187-025-00480-w

Gomez, E., Alford, K. A., Denby, R. W., & Klein-Cox, A. (2021). Implementing smartphone technology to support relational competence in foster youth: A service provider perspective. Journal of Social Work Practice, 35(4), 381–402. https://doi.org/10.1080/02650533.2020.1843145

Guiné, R. D. P. F., Pato, M. L. D. J., Costa, C. A. D., Costa, D. D. V. T. A. D., Silva, P. B. C. D., & Martinho, V. J. P. D. (2021). Food Security and Sustainability: Discussing the Four Pillars to Encompass Other Dimensions. Foods, 10(11), 2732. https://doi.org/10.3390/foods10112732

Gupta, S., Chatterjee, P., Rastogi, R., & Gonzalez, E. D. R. S. (2023). A Delphi fuzzy analytic hierarchy process framework for criteria classification and prioritization in food supply chains under uncertainty. Decision Analytics Journal, 7, 100217. https://doi.org/10.1016/j.dajour.2023.100217

Haryono, Masudin, I., Suhandini, Y., & Kannan, D. (2024). Exploring scientific publications for the development of relevant and effective supplier selection methods and criteria in the food Industry: A comprehensive analysis. Cleaner Logistics and Supply Chain, 12, 100161. https://doi.org/10.1016/j.clscn.2024.100161

Ismail, S., Reza, H., Salameh, K., Kashani Zadeh, H., & Vasefi, F. (2023). Toward an Intelligent Blockchain IoT-Enabled Fish Supply Chain: A Review and Conceptual Framework. Sensors, 23(11), 5136. https://doi.org/10.3390/s23115136

Liang, J., & Qiao, C. (2025). Digital Economy and High-Quality Agricultural Development: Mechanisms of Technological Innovation and Spatial Spillover Effects. Sustainability, 17(8), 3639. https://doi.org/10.3390/su17083639

Liu, B., Chen, M., Kharbeche, M., Kerbache, L., Haouari, M., Gu, X., Wang, W., & Guo, W. (2025). A systematic review of food accessibility in the food supply chains. Supply Chain Analytics, 11, 100149. https://doi.org/10.1016/j.sca.2025.100149

MacCarthy, B. L., Ahmed, W. A. H., & Demirel, G. (2022). Mapping the supply chain: Why, what and how? International Journal of Production Economics, 250, 108688. https://doi.org/10.1016/j.ijpe.2022.108688

Maredia, M. K., Nakasone, E., Porter, M., Nordhagen, S., Caputo, V., Djimeu, E. W., Jones, A. D., Mbuya, M. N., Ortega, D. L., Toure, D., & Tschirley, D. (2024). Using Novel Multimethod Evaluation Approaches to Understand Complex Food System Interventions: Insights from a Supply Chain Intervention Intended to Improve Nutrition. Current Developments in Nutrition, 8(6), 103776. https://doi.org/10.1016/j.cdnut.2024.103776

Mumtaz, U. U., Bergey, P., & Letch, N. (2024). Assessing the role of blockchain technology for marine bunkering operations – A case study of task technology fit. Marine Policy, 159, 105909. https://doi.org/10.1016/j.marpol.2023.105909

Noviawan, D. A. S., & Hutajulu, S. (2025). Multi-Criteria Decision Making with Analytical Hierarchy Process (AHP) Education for Business Priorities at PT. Krakatoa Baja Konstruksi. JMKSP (Jurnal Manajemen, Kepemimpinan, Dan Supervisi Pendidikan), 10(2), 1057–1072. https://doi.org/10.31851/jmksp.v10i2.19534

Olabode, O., Kumar, N., & De, D. (2025). Food loss and waste management in the retail food supply chain: Methods and framework to achieve environmental sustainability. Journal of Environmental Management, 387, 125718. https://doi.org/10.1016/j.jenvman.2025.125718

Pakseresht, A., Yavari, A., Kaliji, S. A., & Hakelius, K. (2023). The intersection of blockchain technology and circular economy in the agri-food sector. Sustainable Production and Consumption, 35, 260–274. https://doi.org/10.1016/j.spc.2022.11.002

Pentek, I., & Letnik, T. (2025). Obstacles and Drivers of Sustainable Horizontal Logistics Collaboration: Analysis of Logistics Providers’ Behaviour in Slovenia. Sustainability, 17(15), 7001. https://doi.org/10.3390/su17157001

Riesenegger, L., Santos, M. J., Ostermeier, M., Martins, S., Amorim, P., & Hübner, A. (2023). Minimizing food waste in grocery store operations: Literature review and research agenda. Sustainability Analytics and Modeling, 3, 100023. https://doi.org/10.1016/j.samod.2023.100023

Sánchez-Teba, E. M., Gemar, G., & Soler, I. P. (2021). From Quantifying to Managing Food Loss in the Agri-Food Industry Supply Chain. Foods, 10(9), 2163. https://doi.org/10.3390/foods10092163

Setyadi, A., Pawirosumarto, S., & Damaris, A. (2025). Toward a Resilient and Sustainable Supply Chain: Operational Responses to Global Disruptions in the Post-COVID-19 Era. Sustainability, 17(13), 6167. https://doi.org/10.3390/su17136167

Shobur, M., Nyoman Marayasa, I., Bastuti, S., Muslim, A. C., Pratama, G. A., & Alfatiyah, R. (2025). Enhancing food security through import volume optimization and supply chain communication models: A case study of East Java’s rice sector. Journal of Open Innovation: Technology, Market, and Complexity, 11(1), 100462. https://doi.org/10.1016/j.joitmc.2024.100462

Soori, M., Dastres, R., & Arezoo, B. (2023). AI-powered blockchain technology in industry 4.0, a review. Journal of Economy and Technology, 1, 222–241. https://doi.org/10.1016/j.ject.2024.01.001

Sorooshian, S. (2024). The sustainable development goals of the United Nations: A comparative midterm research review. Journal of Cleaner Production, 453, 142272. https://doi.org/10.1016/j.jclepro.2024.142272

Wang, G., Wang, Y., Li, S., Yi, Y., Li, C., & Shin, C. (2024). Sustainability in Global Agri-Food Supply Chains: Insights from a Comprehensive Literature Review and the ABCDE Framework. Foods, 13(18), 2914. https://doi.org/10.3390/foods13182914

Xie, Y., Yao, R., Wu, H., & Li, M. (2025). Digital Economy, Factor Allocation, and Resilience of Food Production. Land, 14(1), 139. https://doi.org/10.3390/land14010139

Yamoah, L. E., Mensah, R. O., & Frimpong, A. (2025). The benefits, challenges and implications for integrating emerging technologies in risk evaluation procedures for supply chains in transportation logistics. Discover Sustainability, 6(1), 476. https://doi.org/10.1007/s43621-025-01295-6

Zemnazi, O., Filali, S. E., & Ouahabi, S. (2024). Weather Forecasting Using Artificial Neural Network (ANN): A Review. Procedia Computer Science, 241, 618–623. https://doi.org/10.1016/j.procs.2024.08.090

Zhang, H., Liu, Y., Zhang, C., & Li, N. (2025). Machine Learning Methods for Weather Forecasting: A Survey. Atmosphere, 16(1), 82. https://doi.org/10.3390/atmos16010082

Author Biographies

Arie Wahyu Prananta, Universitas Trunojoyo

Author Origin : Indonesia

Indra Jaya Kusuma Wardana, Universitas Trunojoyo

Author Origin : Indonesia

I Wayan Suyadnya, Universitas Brawijaya Malang

Author Origin : Indonesia

Iqbal Mahcfud Fauzi, Universitas Trunojoyo

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Prananta, A. W., Wardana, I. J. K., Suyadnya, I. W., & Fauzi, I. M. (2025). Supply Chain Management Hierarchy Model to Support SDGs and Food Security, Using the Analytical Hierarchy Process Approach. Jurnal Penelitian Pendidikan IPA, 11(9), 268–274. https://doi.org/10.29303/jppipa.v11i9.12301