Vol. 11 No. 11 (2025): November
Open Access
Peer Reviewed

Cofactor Expansion Approaches for Generalized Determinants of Non-Square Matrices

Authors

Mulyono , Hamidah Nasution , Rizki Habibi , Silvya Ajeng Saraski

DOI:

10.29303/jppipa.v11i11.12335

Published:

2025-10-31

Downloads

Abstract

Determinants are conventionally defined only for square matrices, which leaves the theoretical discussion of rectangular matrices relatively undeveloped. This study aims to extend determinant theory by introducing a generalized form of the cofactor expansion applicable to non-square matrices. The method employed in this research is a theoretical–analytical approach that begins with identifying fundamental determinant axioms and proceeds with the construction of a recursive cofactor expansion for   matrices with . Worked examples are used to demonstrate the linearity, antisymmetry under row interchange, and reduction consistency of the proposed formulation when applied to square matrices. The findings indicate that the generalized expansion preserves essential algebraic properties and shows compatibility with established rectangular determinant definitions, including the Radić determinant. Overall, this study provides a coherent theoretical foundation for the generalized determinant of rectangular matrices and contributes to broader applications of determinant-based analysis in linear algebra

Keywords:

Cofactor expansion Generalized determinant Linear algebra Non-square matrix Radic determinant

References

Abdollahi, N., Jafari, M., Bayat, M., Amiri, A., & Fathy, M. (2015). An efficient parallel algorithm for computing determinant of non-square matrices based on Radic’s definition. International Journal of Distributed and Parallel Systems, 6(4), 1–10. https://airccse.org/journal/ijdps/papers/6415ijdps01.pdf

Amiri, A., Fathy, M., & Bayat, M. (2010). Generalization of some determinantal identities for non-square matrices based on Radic’s definition. TWMS Journal of Pure and Applied Mathematics, 1(2), 163–175. https://static.bsu.az/w24/pp.163-175.pdf

Anton, H., & Rorres, C. (2014). Elementary linear algebra (11th ed.). Wiley. https://www.wiley.com/en-us/Elementary+Linear+Algebra%2C+11th+Edition-p-9781118474228

Arunkumar, B., Rajan, R., & Nagarajan, S. (2011). Extensions of determinant concepts for rectangular matrices. International Journal of Pure and Applied Mathematics, 70(3), 401–412. https://ijpam.eu/contents/2011-70-3/9/9.pdf

Cullis, C. E. (1913). Matrices and determinoids (Vol. 1). Cambridge University Press. https://archive.org/details/matricesdeterm00cull

DeFranza, J., & Gagliardi, J. (2009). Introduction to linear algebra with applications. McGraw-Hill. https://www.mheducation.com/highered/product/introduction-linear-algebra-applications-defranza-gagliardi/M9780073532397.html

Fitri, N., & Hanita, Y. (2018). Simplifying determinant computation using alternative expansion rules. Indonesian Journal of Mathematics and Applications, 7(2), 97–104. https://doi.org/10.31294/jmathapp.v7i2.8123

Hill, R. (2008). Linear algebra and its applications (4th ed.). Pearson Education. https://www.pearson.com/en-us/subject-catalog/p/linear-algebra-and-its-applications-4th-edition/P200000006781

Joshi, V. N. (1980). A determinant for rectangular matrices. Bulletin of the Australian Mathematical Society, 21(1), 137–146. https://doi.org/10.1017/S0004972700011369

Kharie, R. (2021). Determinants and their geometric interpretations in applied algebra. Journal of Mathematical Structures, 15(1), 25–39. https://doi.org/10.5281/zenodo.4751182

Kolman, B., & Hill, D. R. (2008). Elementary linear algebra (9th ed.). Pearson Prentice Hall. https://www.pearson.com/store/p/elementary-linear-algebra/P100001115536

Leon, S. J. (2010). Linear algebra with applications (8th ed.). Pearson Education. https://www.pearson.com/en-us/subject-catalog/p/linear-algebra-with-applications-8th-edition/P200000008786

Makarewicz, A., Mozgawa, W., & Zalewski, M. (2014). On algebraic structures of determinants in higher dimensions. Applied Mathematical Letters, 38, 81–87. https://doi.org/10.1016/j.aml.2014.08.014

Makarewicz, A., & Mozgawa, W. (2016). Volumes of polyhedra in terms of determinants of rectangular matrices. Mathematica Slovaca, 66(5), 1113–1128. https://doi.org/10.1515/ms-2016-0041

Merriam, S. B., & Tisdell, E. J. (2015). Qualitative research: A guide to design and implementation (4th ed.). Jossey-Bass. https://www.wiley.com/en-us/Qualitative+Research%3A+A+Guide+to+Design+and+Implementation%2C+4th+Edition-p-9781119003618

Mursaid, M. (2018). Pengantar Aljabar Linear. Unimed Press. https://repository.unimed.ac.id/28908/

Nur, A. (2014). Properties of determinants in non-square matrices. Indonesian Journal of Mathematics Education, 3(2), 77–86. https://doi.org/10.24014/ijme.v3i2.659

Poole, D. (2015). Linear algebra: A modern introduction (4th ed.). Brooks/Cole. https://www.cengage.com/c/linear-algebra-a-modern-introduction-4e-poole/9781285463247

Polya, G. (2004). How to solve it: A new aspect of mathematical method (2nd ed.). Princeton University Press. https://press.princeton.edu/books/paperback/9780691164076/how-to-solve-it

Putra, R., & Rizal, A. (2020). Algorithmic determinants in computational linear algebra. Jurnal Teknologi dan Sains, 9(2), 53–61. https://doi.org/10.30812/jts.v9i2.847

Radić, M. (1966). On determinants of rectangular matrices. Glasnik Matematički, 1(21), 17–22. https://web.math.pmf.unizg.hr/glasnik/Vol/vol01no1.html

Radić, M. (2008). Applications of rectangular determinants in geometric analysis. Mathematical Communications, 13(1), 65–72. https://hrcak.srce.hr/29743

Rorres, C. (2014). Elementary linear algebra applications version (10th ed.). Wiley. https://www.wiley.com/en-us/Elementary+Linear+Algebra%3A+Applications+Version%2C+10th+Edition-p-9781118473504

Stanimirović, P. S., & Stojaković, M. (1997). A class of generalized determinants for non-square matrices. Linear and Multilinear Algebra, 42(3), 231–247. https://doi.org/10.1080/03081089708818563

Stewart, J. (2016). Essential calculus: Early transcendentals (2nd ed.). Cengage Learning. https://www.cengage.com/c/essential-calculus-early-transcendentals-2e-stewart/9781285587950

Strang, G. (2019). Linear algebra and learning from data. Wellesley-Cambridge Press. https://math.mit.edu/~gs/learningfromdata/

Syahriandi, M., & Thresye, E. (2017). Determinant computation in underdetermined systems. Journal of Applied Mathematical Analysis, 9(2), 99–108. https://doi.org/10.31219/osf.io/t3pfr

Yanai, H., & Takane, Y. (2006). Matrix algebra in multivariate analysis. World Scientific. https://doi.org/10.1142/6218

Yurchenko, V. (2023). Determinant, permanent and immanant of rectangular matrix. Preprint. https://doi.org/10.13140/RG.2.2.34657.79203

Zhang, H., & Liu, Y. (2024). Determinant extensions and tensor representations of rectangular matrices. Linear and Multilinear Algebra, 72(8), 1553–1572. https://doi.org/10.1080/03081087.2024.2378541

Author Biographies

Mulyono, Universitas Negeri Medan

Author Origin : Indonesia

Hamidah Nasution, State University of Medan

Author Origin : Indonesia

Rizki Habibi, Medan State University

Author Origin : Indonesia

Silvya Ajeng Saraski, Medan State University

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Mulyono, M., Nasution, H., Habibi, R., & Saraski, S. A. (2025). Cofactor Expansion Approaches for Generalized Determinants of Non-Square Matrices. Jurnal Penelitian Pendidikan IPA, 11(11), 790–797. https://doi.org/10.29303/jppipa.v11i11.12335