Potential of Combined Curcuma zedoaria and Piper crocatum Leaf Extracts as Natural Male Antifertility Agents: an Experimental Study in Mice

Authors

Sukarjati , Mitha Novia Sari

DOI:

10.29303/jppipa.v11i10.12380

Published:

2025-10-25

Downloads

Abstract

Curcuma zedoaria and Piper crocatum are indigenous Indonesian herbal plants containing various bioactive compounds. C. zedoaria is known to contain curcumin, tannins, saponins, and flavonoids, while P. crocatum contains piperine, tannins, saponins, flavonoids, alkaloids, and triterpenoids. This study aimed to investigate the effects of white turmeric extract, red betel leaf extract, and their combination on the spermatogenic cells of male mice. Extracts were obtained using the maceration method. A total of 30 male mice, aged 3 months and weighing 25–30 grams, were randomly divided into four treatment groups with three replications each: control, white turmeric extract, red betel extract, and a combination of both extracts. The extracts were administered orally at doses of 50, 100, and 150 mg/kg BW for individual extracts, and 25:25, 50:50, and 75:75 mg/kg BW for the combined treatment, over 35 days. Histological sections of the testis were prepared following standard laboratory protocols. One-way ANOVA showed a significant decrease (p < 0.05) in all cell types in treated groups, with the most substantial reduction observed at the 75:75 mg/kg BW combination dose. The conclusion of this study is that the combined extract of C. zedoaria and P. crocatum has the potential as an antifertility

Keywords:

Antitertility, Curcuma zedoaria, Piper crocatum, Mus musculus, Spermatogonium, Spermatocyte, Spermatids

References

Abbe, C. R., Page, S. T., & Thirumalai, A. (2020). Male Contraception. Yale Juornal of Biology and Medicine, 93, 603–613. Retrieved from https://pmc.ncbi.nlm.nih.gov/articles/PMC7513428/

Anggeriani, R. (2019). Effect Of Curcuma Zedoaria Extract On Testis And Seminal Vesicle Weights In White Rats. The 6th International Conference on Public Health, 196–199. https://doi.org/10.26911/the6thicph-FP.03.03

Arwansyah, Ambarsari, L., & Sumaryada, T. I. (2014). Simulasi Docking Senyawa Kurkumin dan Analognya Sebagai Inhibitor Reseptor Androgen pada Kanker Prostat. Current Biochemistry, 1(1), 11–19. Retrieved from https://shorturl.asia/0ATnM

Bhardwaj, G. S., Jain, A., Jangid, T., & Jangir, R. N. (2025). Exploring the Male Antifertility Potential of Medicinal Plants : A Comprehensive Review. Pharmacogn.Res, 17(2), 462–488. https://doi.org/10.5530/pres.20252092

Cannarella, R., Curto, R., Condorelli, R. A., Lundy, S. D., Vignera, S. La, & Calogero, A. E. (2024). Molecular insights into Sertoli cell function : how do metabolic disorders in childhood and adolescence affect spermatogonial fate ? Nature Communications, 15(5582), 1–13. https://doi.org/10.1038/s41467-024-49765-1

Chen, X., Ge, F., Liu, J., Bao, S., Chen, Y., Li, D., & Li, Y. (2018). Diverged Effects of Piperine on Testicular Development : Stimulating Leydig Cell Development but Inhibiting Spermatogenesis in Rats. Frontier in Pharmacology, 9(March), 1–13. https://doi.org/10.3389/fphar.2018.00244

Chinta, G., Charles, M. R. C., Klopčič, I., Dolenc, M. S., Periyasamy, L., & Coumar, M. S. (2015). In silico and in vitro investigation of the piperineʼs male contraceptive effect: docking and molecular dynamics simulation studies in androgen-binding protein and androgen receptor. Planta Medica, 81(10), 804–812. https://doi.org/10.1055/s-0035-1546082

Chinta, G., Coumar, M. S., & Periyasamy, L. (2017). Reversible Testicular Toxicity of Piperine on Male Albino Rats. Pharmacogn.Mag, 13(51), 525–532. https://doi.org/10.4103/pm.pm

Diao, L., Turek, P. J., John, C. M., Fang, F., Pera, R. A. R., & Griswold, M. (2022). Roles of Spermatogonial Stem Cells in Spermatogenesis and Fertility Restoration. Frontiers in Endocrinology, 13, 1–8. https://doi.org/10.3389/fendo.2022.895528

Fatrin, T., Nita, S., Marwoto, J., Maritska, Z., & Hidayat, R. (2017). The Efficacy of Temu Putih Fraction (Curcuma Zedoaria (Berg) Roscoe ) Related Quality and Quantity of Spermatozoa in Male Wistar Rats. Bioscientia Medicina, 1(1), 14–21. Retrieved from https://repository.unsri.ac.id/48298/1/2017 tiara.pdf

Gharge, S., Hiremath, S. I., Kagawad, P., Jivaje, K., & Palled, M. S. (2021). Curcuma zedoaria Rosc ( Zingiberaceae ): a review on its chemical , pharmacological and biological activities. Future Journal of Pharmaceutical Sciences, 7(166), 1–9. https://doi.org/10.1186/s43094-021-00316-1

Gofur, A., & Lestari, S. R. (2018). The role of red betel extracts ( piper crocatum ruiz & pav .) against testicular assessment on mice model of rheumatoid arthritis. Int. J. Complement Alt Med, 11(538), 120–122. https://doi.org/10.15406/ijcam.2018.11.00360

Hasan, H., Bhushan, S., Fijak, M., & Meinhardt, A. (2022). Mechanism of In fl ammatory Associated Impairment of Sperm Function , Spermatogenesis and Steroidogenesis. Frontiers in Endocrinology, 13(April), 1–8. https://doi.org/10.3389/fendo.2022.897029

Lei, T., Yang, Y., & Yang, W. (2025). Luteinizing Hormone Regulates Testosterone Production , Leydig Cell Proliferation , Differentiation , and Circadian Rhythm During Spermatogenesis. International Journal of Molecular Sciences, 26(8), 1–24. https://doi.org/10.3390/ijms26083548

Li, L., Lin, W., Wang, Z., Huang, R., Xia, H., Li, Z., Deng, J., Ye, T., Huang, Y., & Yang, Y. (2024). Hormone Regulation in Testicular Development and Function. International Journal of Molecular Science, 25(5805), 1–25. https://doi.org/10.3390/ijms25115805

Liu, W., Du, L., Li, J., He, Y., & Tang, M. (2024). Microenvironment of spermatogonial stem cells : a key factor in the regulation of spermatogenesis. Stem Cell Research and Theraphy, 14(294), 1–22. https://doi.org/10.1186/s13287-024-03893-z

Mansour, H. A. E. (2025). Impacts of environmental pollutants and environmentally transmitted parasites on male fertility and sperm quality. Discover Applied Sciences, 9, 1–24. https://doi.org/10.1007/s42452-025-07400-8

Maroto, M., Torvisco, S. N., García-merino, C., Fernández-gonzález, R., & Pericuesta, E. (2025). Mechanisms of Hormonal , Genetic , and Temperature Regulation of Germ Cell Proliferation , Differentiation , and Death During Spermatogenesis. Biomolecules, 15(4), 1–35. https://doi.org/10.3390/biom15040500

Martins, S., & Anderson, R. A. (2022). Reproductive axis ageing and fertility in men. Review in Endrocrine and Metabolic Disorder, 23(September), 1109–1121. https://doi.org/10.1007/s11154-022-09759-0

Mishra, R. K., Singh, S., & Singh, S. K. (2019). Natural products in regulation of male fertility. Indian Journal of Medical Research, 148, 107–114. https://doi.org/10.4103/ijmr.IJMR

Najah, M., & Yuni. (2024). Analisis Determinan Keikutsertaan Pria Menjadi Akseptor Widwifery Up Date. Jurnal Midwifery Update (MU), 6(1), 23–32. https://doi.org/10.32807/jmu.v6i1.165

Naz, R. K. (2011). Can Curcumin Provide an Ideal Contraceptive ? Molecular Reproduction and Development, 123(78), 116–123. https://doi.org/10.1002/mrd.21276

Naz, R. K., & Lough, M. L. (2014). European Journal of Obstetrics & Gynecology and Reproductive Biology Curcumin as a potential non-steroidal contraceptive with spermicidal and microbicidal properties. European Journal of Obstetrics and Gynecology, 176, 142–148. https://doi.org/10.1016/j.ejogrb.2014.01.024

Ongko, N. X., Chiuman, L., & Ginting, C. N. (2019). Effect of white turmeric rhizome extract (Curcuma zedoaria) on testis histology of male wistar rat. Am Sci Res J Eng Technol Sci, 55(1), 69–74. Retrieved from https://shorturl.asia/8sfHa

Parveen, A., Zahiruddin, S., Agarwal, N., Akhtar, M., Husain, S., & Ahmad, S. (2021). Saudi Journal of Biological Sciences Modulating effects of the synergistic combination of extracts of herbal drugs on cyclophosphamide-induced immunosuppressed mice. Saudi Journal of Biological Sciences, 28(11), 6178–6190. https://doi.org/10.1016/j.sjbs.2021.06.076

Salehi, B., Zakaria, Z. A., Gyawali, R., & Ibrahim, S. A. (2019). Piper Species : A Comprehensive Review on Their Phytochemistry , Biological Activities and Applications. Molecules, 24(7). https://doi.org/10.3390/molecules24071364

Samarghandian, S., Azimi-nezhad, M., & Farkhondeh, T. (2017). ScienceDirect Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain , liver and kidney. Biomedicine et Pharmacotherapy, 87, 223–229. https://doi.org/10.1016/j.biopha.2016.12.105

Shah, W., Khan, R., Shah, B., Khan, A., Dil, S., Liu, W., & Wen, J. (2021). The Molecular Mechanism of Sex Hormones on Sertoli Cell Development and Proliferation. Frontiers in Endocrinology, 12(July), 1–13. https://doi.org/10.3389/fendo.2021.648141

Sukarjati, & Pratama, Y. B. (2019). Ekstrak Temu Putih (Curcuma zedoaria Rosc) dan Ekstrak Daun Sirih Merah (Piper crocatum) Berpotensi Menurunkan Kualitas Spermatozoa Mencit (mus musculus L. Wahana, 71(2), 31–40. Retrieved from https://jurnal.unipasby.ac.id/whn/article/download/2101/1887

Sukarjati, & Syahputra, A. (2025). Potential of Combined Insulin Leaf ( Smallanthus sonchifolius ) and Noni Fruit ( Morinda citrifolia L .) Extracts in Reducing Blood Glucose Level and Spermatogenic Cells Improvement in Diabetic Mice. Jurnal Penelitian Pendidikan IPA, 11(5), 1089–1100. https://doi.org/10.29303/jppipa.v11i5.11174

Tesarik, J. (2025). Lifestyle and Environmental Factors Affecting Male Fertility , Individual Predisposition , Prevention , and Intervention. International Journal of Molecular Sciences, 26(2797), 1–23. https://doi.org/10.3390/ijms26062797

Upadhyay, R. K. (2024). Plant origin contraceptives: phytochemistry, mechanism of action, and side effects. International Journal Of Green Pharmacy, 18(1), 21–38. Retrieved from http://greenpharmacy.info/index.php/ijgp/article/viewFile/3535/1318

Verma, S., & Yadav, A. (2021). Rising trends towards the development of oral herbal male contraceptive : an insight review. Future Journal of Pharmaceutical Sciences, 7(23), 1–15. https://doi.org/10.1186/s43094-020-00154-7

Winarti, R., Saraswati, T. R., & Tana, S. (2021). Pengaruh Serbuk Kunyit dan Kurkumin terhadap Kualitas Spermatozoa Tikus Putih ( Rattus norvegicus ) yang Diberi Pakan Hiperlipid. Jurnal Akademika Biologi, 10(1), 24–31. Retrieved from https://ejournal3.undip.ac.id/index.php/biologi/article/view/31062

Yadav, P. (2024). Testicular inflammation in male reproductive system. Exploration of Immnology, 4, 446–464. https://doi.org/10.37349/ei.2024.00151

Yokonishi, T., Mckey, J., Ide, S., & Capel, B. (2020). Sertoli cell ablation and replacement of the spermatogonial niche in mouse. Nature Communications, 11(40), 1–11. https://doi.org/10.1038/s41467-019-13879-8

Zhang, D., Jin, W., Cui, Y., & He, Z. (2024). Establishment and Characterization of Testis Organoids with Proliferation and Differentiation of Spermatogonial Stem Cells. Cells, 13(1632), 1–14. https://doi.org/10.3390/cells13191642

Zhou, X., Seto, S. W., Chang, D., & Kiat, H. (2016). Synergistic Effects of Chinese Herbal Medicine : A. Comprehensive Review of Methodology and Current, 7(July), 1–16. https://doi.org/10.3389/fphar.2016.00201

Author Biographies

Sukarjati, Universitas PGRI Adi Buana Surabaya

Mitha Novia Sari, Universitas PGRI Adi Buana Surabaya

Downloads

Download data is not yet available.

How to Cite

Sukarjati, & Sari, M. N. (2025). Potential of Combined Curcuma zedoaria and Piper crocatum Leaf Extracts as Natural Male Antifertility Agents: an Experimental Study in Mice. Jurnal Penelitian Pendidikan IPA, 11(10), 250–259. https://doi.org/10.29303/jppipa.v11i10.12380