A Review of Indonesia’s Biodiversity as a Resource for Epigenetic Research: Opportunities and Future Directions
DOI:
10.29303/jppipa.v11i11.12414Published:
2025-11-25Downloads
Abstract
Indonesia, a megadiverse nation, possesses extraordinary biological wealth, including a vast array of medicinal plants, diverse fauna, and unique microbial ecosystems. This rich biodiversity, however, faces severe threats from habitat loss and climate change, underscoring the urgent need for its documentation and scientific utilization, particularly in emerging fields such as epigenetics. Epigenetics, which involves heritable changes in gene expression without altering the DNA sequence, is fundamental to understanding biological processes and disease. While foundational epigenetic discoveries often originate from microorganisms, Indonesia's extensive microbial and plant diversity, including endemic species, remains largely unexplored regarding its epigenetic potential. This review highlights Indonesia’s biodiversity, including representative species, as a promising source of novel model organisms for epigenetic research and bioactive metabolites with significant medical potential, which may possess epigenetic-modulating properties as natural ‘epidrugs’ inspired by traditional Indonesian herbal medicine known as jamu. Bridging biodiversity research with molecular epigenetics offers a powerful framework for identifying new epigenetic mechanisms, regulators, and natural compounds, opening new frontiers in personalized medicine and disease prevention within Indonesia's unique biological and cultural landscape.
Keywords:
Epidrugs, Epigenetics, Indigenous microbiota, Indonesian herbal medicine, Plant biodiversityReferences
Abidin, K. R., Nurdhidayatulloh, A., & Nurmah. (2024). In Silico Identification of Bajakah Root (Spatholobus littoralis Hassk) Alkaloid Compounds to Stimulate Lipolysis through Inhibition of Phosphodiesterase-4. Science & Technology Asia, 29(3), 269–279. Retrieved from https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/252059
Agustina, T., Chasani, A. R., Daryono, B. S., & Rifqi, M. S. (2024). Genetic Diversity of Sangihe Nutmeg (Myristica fragrans Houtt.) Based on Morphological and ISSR Markers. Scientifica (Cairo), 28. https://doi.org/10.1155/sci5/5568104
Akbar, A. (2021). Penggunaan dan Nilai Ekonomi dari Tanaman Aglaonema sp. di Kalangan Pedagang Tanaman Hias Sekitar Cengkareng dan Pulo Gadung. Jurnal Bios Logos, 11(12), 122-128. https://doi.org/10.35799/jbl.v11i2.34411
Altucci, L., & Rots, M.G. (2016). Epigenetic drugs: from chemistry via biology to medicine and back. Clinical Epigenetics, 8(56). https://doi.org/10.1186/s13148-016-0222-5
Amalia, L., Hakim, W. L., Miranti, M., Putri, D. I., & Kristiani, T. (2019). Comparing the Javanese Edelweiss (Anaphalis javanica) density in Tegal Alun, Tegal Bungbrun and Pondok Saladah of Mount Papandayan. Journal of Physics: Conference Series, 1402(3). https://doi.org/10.1088/1742-6596/1402/3/033032
Asiandu, A. P. (2021). Biological Aspects and Conservation of Rafflesia arnoldii: Indonesian Endemic Plant Conservation. Konservasi Hayati, 17(2), 49-55. https://doi.org/10.33369/hayati.v17i2.14387
Avramova, Z. (2011). Epigenetic regulatory mechanisms in plants. Trygve Tollefsbol. In Handbook of Epigenetics: The New Molecular and Medical Genetics (pp. 251-278). Amsterdam: Academic Press/Elsevier.
Banaszynski, L. A., Allis, C. D., & Lewis, P. W. (2010). Histone variants in metazoan development. Developmental Cell, 19(5), 662-674. https://doi.org/10.1016/j.devcel.2010.10.014
Bannister, A. J., & Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Research, 21(3), 381-395. https://doi.org/10.1038/cr.2011.22
Bascos, E. M. A., Fernando, E. S., Duya, M. V., & Rodriguez, L. J. V. (2024). What's that smell? The putrid scent of Rafflesia consueloae, its origin and developmental regulation. Flora, 318. https://doi.org/10.1016/j.flora.2024.152571
Batubara, I., & Prastya, M. E. (2020). Potential Use of Indonesian Medicinal Plants for Cosmetic and Oral Health: A Review. Jurnal Kimia Valensi, 6(1). https://doi.org/10.15408/jkv.v6i1.16252
Baylin, S. B., Esteller, M., Rountree, M. R., Bachman, K. E., Schuebel, K., & Herman, J. G. (2001). Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Human Molecular Genetics, 10(7), 687-692. https://doi.org/10.1093/hmg/10.7.687
Berger, S. L., Kouzarides, T., Shiekhattar, R., & Shilatifard, A. (2009). An operational definition of epigenetics. Genes & Development, 23(7), 781-783. https://doi.org/10.1101/gad.1787609
Bird, A. (2007). Perceptions of epigenetics. Nature, 447, 396–398. https://doi.org/10.1038/nature05913
Blumenstiel, J. P. (2025). From the Cauldron of Conflict: Endogenous Gene Regulation by piRNA and Other Modes of Adaptation Enabled by Selfish Transposable Elements. Seminars in Cell & Developmental Biology, 164, 1-12.
https://doi.org/10.1016/j.semcdb.2024.05.001
Brownell, J. E., Zhou, J., & Ranalli, T. (1996). Tetrahymena Histone Acetyltransferase A: A Homolog to Yeast Gcn5p Linking Histone Acetylation to Gene Activation. Cell, 84(6), 843-851. https://doi.org/10.1016/s0092-8674(00)81063-6
CBD Secretariat Indonesia. (2016). Country Profile: Biodiversity Facts. Retrieved from https://www.cbd.int/countries/profile/default.shtml?country=id#facts.
Chalker, D. L., Meyer, E., & Mochizuki, K. (2013) Epigenetics of ciliates. Cold Spring Harbor Perspectives in Biology, 5(12). https://doi.org/10.1101/cshperspect.a017764
Colot, V., & Rossignol, J. L. (1999). Eukaryotic DNA methylation as an evolutionary device. BioEssays, 21(5), 402-411. https://doi.org/10.1002/(SICI)1521-1878(199905)21:5<402::AID-BIES7>3.0.CO;2-B
Dalbeth, N., Merriman, T. R., & Stamp, L. K. (2016). Gout. Lancet, 388(10055), 2039-2052. https://doi.org/10.1016/S0140-6736(16)00346-9
Dai, W., Qiao, X., Fang, Y., Guo, R., Bai, P., Liu, S., Li, T., Jiang, Y., Wei, S., Na, Z., Xiao, X., & Li, D. (2024). Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduction and Target Therapy, 9, 332. https://doi.org/10.1038/s41392-024-02039-0
Dan, J., & Chen, T. (2016). Genetic studies on mammalian DNA methyltransferases. Advances in Experimental Medicine and Biology, 945, 169-191. https://doi.org/10.1007/978-3-319-43624-1_6
Elfahmi, Woerdenbag, H. J., & Kayser, O. (2014) Jamu: Indonesian traditional herbal medicine towards rational phytopharmacological use. Journal of Herbal Medicine, 4(2), 51 73. https://doi.org/10.1016/j.hermed.2014.01.002
Elsässer, S. J., Allis, C. D., & Lewis, P. W. (2011). Cancer. New epigenetic drivers of cancers. Science, 331(6021), 1145-1146. https://doi.org/10.1126/science.1203280
Engreitz, J. M., Pandya-Jones, A., McDonel, P., Shishkin, A. A., Sirokman, K., Surka, C., Kadri, S., Xing, J., Goren, A., Lander, E. S., Plath, K., & Guttman, M. (2013). The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science, 341(6147), 1237973. https://doi.org/10.1126/science.1237973
Feinberg, A. P. (2007). Phenotypic plasticity and the epigenetics of human disease. Nature, 33, 245-254. https://doi.org/10.1038/ng1089
Frías-Lasserre D., & Villagra, C. A. (2017) The Importance of ncRNAs as Epigenetic Mechanisms in Phenotypic Variation and Organic Evolution. Frontiers in Microbiol, 8. https://doi.org/10.1111/10.3389/fmicb.2017.0248
Goto, D. B., & Nakayama, J. I. (2012). RNA and epigenetic silencing: Insight from fission yeast. Development Growth and Differentiation, 54(1), 129-141. https://doi.org/10.1111/j.1440-169X.2011.01310.x
Gottschling, D. E., Aparicio, O. M., Billington, B. L., & Zakian, V. A. (1990). Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell, 63(4), 751-762. https://doi.org/10.1016/0092-8674(90)90141-z
Grewal, S. I. S. (2023). The molecular basis of heterochromatin assembly and epigenetic inheritance. Molecular Cell, 83(11), 1767-1785. https://doi.org/10.1016/j.molcel.2023.04.020
Hanif, N., Pakan, J. S., Lisias, S. C., Sael, W. B., Santosa, N. F., Tyas, T. A., Lemuel, M. M., Mohamad, K., Sa’diah, S., Dewi, F. N., Oluwabusola, E. T., Tsunematsu, Y., Tan, L. T., Chasanah, E., Murni, A., de Voogd, N. J., Jomori, T., Kita, M., Jaspars, M., & Tanaka, J. (2025). Integrated biological and chemical investigation of Papuan marine organisms for the discovery of potential cytotoxic marine natural products. Natural Product Research, 1-6.
https://doi.org/10.1080/14786419.2025.2559778
Harrison, S. J., Bishton, M., Bates, S. E., Grant, S., Piekarz, R. L., Johnstone, R. W., Dai, Y., Lee, B., Araujo, M. E., & Prince, H. M. (2012). A focus on the preclinical development and clinical status of the histone deacetylase inhibitor, romidepsin (depsipeptide, Istodax(®)). Epigenomics, 4(5), 571-589. https://doi.org/10.2217/epi.12.52
Henikoff, S., & Smith, M. M. (2015). Histone variants and epigenetics. Cold Spring Harbor Perspectives in Biology, 7(1). https://doi.org/10.1101/cshperspect.a019364
Imai, S., Armstrong, C. M., Kaeberlein, M., & Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 403, 795–800. https://doi.org/10.1038/35001622
Islamiati, E. D., Widada, J., Wahyuningsih, T. D., & Widianto, D. (2022). Volatile organic compounds of Streptomyces sp. GMR22 inhibit growth of two plant pathogenic fungi. Agriculture and Natural Resources, 56(5), 899-908. Retrieved from https://li01.tci-thaijo.org/index.php/anres/article/view/256570.
Jin, B., Li, Y., & Robertson, K. D. (2011). DNA methylation: Superior or subordinate in the epigenetic hierarchy? Genes and Cancer, 2(6), 607-617. https://doi.org/10.1177/1947601910393957
Nabila, S. T., Soeprobowati, T. R., Cahyani, N. K. D., Jumari, J., Hariyati, R., & Heijnis, H. (2024). Environmental DNA Application to Identify Protozoan Community in the Sediment of Balekambang Lake, Dieng, Central Java. Indonesian Journal of Limnology, 5(1), 39-48. https://doi.org/10.51264/inajl.v5i1.48
Jaenisch, R., & Bird, A. (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics, 33(3), 245-254. https://doi.org/10.1038/ng1089
Kanti, A., Yamazaki, A., & Kawasaki, H. (2018). Citeromyces cibodasensis sp. nov., a novel yeast species isolated from leaf litter in Indonesia. Mycoscience, 59(6), 455-460. https://doi.org/10.1016/j.myc.2018.03.003
Khunnamwong, P., Nualthaisong, P., Kingphadung, K., Takashima, M., Sugita, T., Sumerta, I. N., Kanti, A., Kawasaki, H., & Limtong, S. (2025). Rhodotorula tropicalis sp. nov., a novel red yeast of the order Sporidiobolales isolated from Thailand, Indonesia and Japan. International Journal of Systematic and Evolutionary Microbiology, 75(3). https://doi.org/10.1099/ijsem.0.006701
Kapustin, D. A., Glushchenko, A. M., Kociolek, J. P., & Kulikovskiy M. S. (2021). Encyonopsis indonesica sp. nov. (Bacillariophyceae, Cymbellales), a new diatom from the ancient lake Matano (Sulawesi, Indonesia). PhytoKeys, 175, 1-11. https://doi.org/10.3897/phytokeys.175.61044
Kapustin, D. A., Glushchenko, A. M., & Kulikovskiy, M. S. (2022). Achnanthidiumbratanense sp. nov. (Bacillariophyceae, Achnanthidiaceae), a new diatom from the Lake Bratan (Bali, Indonesia). PhytoKeys, 188, 167-175. https://doi.org/10.3897/phytokeys.188.77882
Kisvarga, S., Horotan, K., & Orloci, L. (2025). The Role and Possibilities of Epigenetics in Ornamental Plant Breeding. Plant Molecular Biology Reporter, 43, 941–953. https://doi.org/10.1007/s11105-025-01545-x
Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128(4), 693-705. https://doi.org/10.1016/j.cell.2007.02.005
Kusuma, Y. W. C., Noerwana, O., & Isagi, Y. (2018). New Evidence for Flower Predation on Three Parasitic Rafflesia Species from Java. Tropical Conservation Science, 11, 1-6. https://doi.org/10.1177/194008291879601
Kuo, M.-H., Brownell, J. E., Sobel, R. E., Ranalli, T. A., Cook, R. G., Edmondson, D. G., Roth, S. Y., & Allis, C. D. (1996). Transcription-linked acetylation by GcnSp of histones H3 and H4 at specific lysines. Nature, 383, 269–272. https://doi.org/10.1038/383269a0
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K., & Jenuwein, T. (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature, 410(6824), 116-120. https://doi.org/10.1038/35065132
Ling, C., & Rönn, T. (2019). Epigenetics in Human Obesity and Type 2 Diabetes. Cell Metabolism, 29(5), 1028-1044. https://doi.org/10.1016/j.cmet.2019.03.009
Liu, Z., Xie, Z., Jones, W., Pavlovicz, R. E., Liu, S., Yu, J., Li, P. K., Lin, J., Fuchs, J. R., Marcucci, G., Li, C., & Chan, K. K. (2009). Curcumin is a potent DNA hypomethylation agent. Bioorganic & Medicinal Chemistry Letters, 19(3), 706-709. https://doi.org/10.1016/j.bmcl.2008.12.041
Lohman, D. J., de Bruyn, M., Page, T., von Rintelen, K., Hall, R., Ng, P. K. L., Shih, H-T., Carvalho, G. R., & von Rintelen, T. (2011). Biogeography of the Indo-Australian archipelago. Annual Review of Ecology, Evolution, and Systematics, 42, 205-226. https://doi.org/10.1146/annurev-ecolsys-102710-145001
Lorenzo, P. M., Izquierdo, A. G., Rodriguez-Carnero, G., Fernández-Pombo, A., Iglesias, A., Carreira, M. C., Tejera, C., Bellido, D., Martinez-Olmos, M. A., Leis, R., Casanueva, F. F., & Crujeiras, A. B. (2022). Epigenetic Effects of Healthy Foods and Lifestyle Habits from the Southern European Atlantic Diet Pattern: A Narrative Review. Advances in Nutrition, 13(5), 1725-1747. https://doi.org/10.1093/advances/nmac038
Louis, M. (2022). Review on Regulation of Epigenetic Mechanism. Journal of Molecular and Genetic Medicine, 16(6). https://doi.org/10.37421/1747-0862.2022.16.558
Lutfia, A., & Rupaedah, B. (2025). Volatile Organic Compounds (VOC) Produced by Paraconiothyrium archidendri F10 as Biofungicidal Materials for Ganoderma boninense. Journal of Agricultural Science and Technology, 27(6), 1459-1472. https://doi.org/10.48311/jast.2025.16834
Marchese, F. P., Raimondi, I., & Huarte, M. (2017). The multidimensional mechanisms of long noncoding RNA function. Genome Biology, 18, 206. https://doi.org/10.1186/s13059-017-1348-2
Martienssen, R. A., & Moazed, D. (2015). RNAi and heterochromatin assembly. Cold Spring Harbor Perspectives in Biology, 7(8). https://doi.org/10.1101/cshperspect.a019323
Mengist, W., Soromessa, T., & Lagese, G. (2020). Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX, 7, 100777. https://doi.org/10.1016/j.mex.2019.100777
Miryeganeh, M., Marletaz, F., Gavriouchkina, & Saze, H. (2022). De novo genome assembly and in natura epigenomics reveal salinity-induced DNA methylation in the mangrove tree Bruguiera gymnorhiza. New Phytologist, 233, 2094-2110. https://doi.org/10.1111/nph.17738
Moazed, D. (2011). Mechanisms for the inheritance of chromatin states. Cell, 146(4), 510-518. https://doi.org/10.1016/j.cell.2011.07.013
Mustafa, R. A., Abdul Hamid, A., Mohamed, S., & Bakar, F. A. (2010). Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants. Journal of Food Science, 75(1), C28-35. https://doi.org/10.1111/j.1750-3841.2009.01401.x
Nathan, D., Ingvarsdottir, K., Sterner, D. E., Bylebyl, G. R., Dokmanovic, M., Dorsey, J. A., Whelan, K. A., Krsmanovic, M., Lane, W. S., Meluh, P. B., Johnson, E. S., & Berger, S. L. (2006). Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes and Development, 20(8), 966–976. https://doi.org/10.1101/gad.1404206
Primasari, A., Apriyanti, A., Ambardhani, N., Satari, M. H., Herdiyanti, Y., & Kurnia, D. (2022). Formulation and Antibacterial Potential of Sarang Semut (Myrmecodia pendans) against Oral Pathogenic Bacteria: An In Vitro Study. The Open Dentistry Journal, 16. https://doi.org/10.2174/18742106-v16-e2112140
Putra, I. M. B. J. B., Budiasa, K., Merdana, I. M., & Adi, A. A. M. (2020). The effect of Myrmecodia pendans extract toward gastric histology in white rats treated with toxic dose of gentamicin: a preliminary report. Bali Medical Journal, 9(3), 924-928. https://doi.org/10.15562/bmj.v9i3.2079
Rahayu, M., Kalima, T., Meryam Martgrita, M., Sembiring, C., Simangunsong, L., Sihotang, V. B., Purwanto, Y., & Nikmatullah, M. (2024). Ethnobotany and diversity of Citrus spp. (Rutaceae) as a source of “Kem-kem” traditional medicine used among the Karo sub-ethnic in North Sumatra, Indonesia. Heliyon, 9(9), e29721. https://doi.org/10.1016/j.heliyon.2024.e29721
Rahmat, E., Lee, J., & Kang, Y. (2021). Ethnobotany, Phytochemistry, Biotechnology, and Pharmacological Activities. Evidence-based Complementary and Alternative Medicine, 11. https://doi.org/10.1155/2021/9960813
Richards, C. L., Alonso, C., Becker, C., Bossdorf, O., Bucher, E., Colomé-Tatché, M., Durka, W., Engelhardt, J., Gaspar, B., Gogol-Doring, A., Grosse, A., Gurp, T. P. V., Heer, K., Kronholm, I., Lampei, C., Latzel, V., Mirouze, M., Opgenoorth, L., Paun, O., Prohaska, S. J., Rensing, S. A., Stadler, P. F., Trucchi, E., Ullrich, K., & Verhoeven, K. J. F. (2017). Ecological plant epigenetics: Evidence from model and non-model species, and the way forward. Ecology Letters, 20(12), 1576-1590. https://doi.org/10.1111/ele.12858
von Rintelen K., Arida E., & Häuser C. (2017) A review of biodiversity-related issues and challenges in megadiverse Indonesia and other Southeast Asian countries. Research Ideas and Outcomes 3, e20860. https://doi.org/10.3897/rio.3.e20860
Riswan, S., & Yamada, I. (2006). A note on the progress of biodiversity research in Indonesia. Tropics, 15(3), 249-258. https://doi.org/10.3759/tropics.15.249
Robertson, K. D. (2005). DNA methylation and human disease. Nature Reviews Genetics, 6(8), 597-610). https://doi.org/10.1038/nrg1655
Rozianty, E., & Wijaya, N. M. (2019). Diversity and distribution pattern of Anaphalis sp. (Edelweis) in the Cemoro Sewu Climbing Track in Mount Lawu Magetan, East Java, Indonesia. EurAsian Journal of BioSciences, 13, 1755-1762. Retrieved from https://shorturl.at/Y4eYr
Safitri, I., Kushadiwijayanto, A. A., Nurdiansyah, S. I., Sofiana, M. S. J., & Andreani. (2024). Inventarisasi Jenis Mangrove di Wilayah Pesisir Desa Sungai Nibung, Kalimantan Barat. Jurnal Ilmu Lingkungan, 22(1), 109-124. https://doi.org/10.14710/jil.22.1.109-124
Samidjo, G. S., Oktavidiati, E., Sunaryadi. (2022). Ecophysiology Identification and Flower Morphology of Rafflesia arnoldii at Forest Ecosystem of Bengkulu Province. IOP Conf. Series: Earth and Environmental Science, 985. https://doi.org/10.1088/1755-1315/985/1/012014
Sasaki, Y., Mizushima, N., Norikura, T., Matsui-Yuasa, I., & Kojima-Yuasa, A. (2025). Ethyl p-methoxycinnamate inhibits tumor growth by suppressing of fatty acid synthesis and depleting ATP. Scientific Reports, 15. https://doi.org/10.1038/s41598-025-00131-1
Seffer, I., Nemeth, Z., Hoffmann, G., Matics, R., Seffer, A. G., & Koller, A. (2013). Unexplored potentials of epigenetic mechanisms of plants and animals—Theoretical considerations. Gene Regulation and Systems Biology, 7, 1–12. https://doi.org/10.4137/GEG.S11752
Sharma, S., Kelly, T. K., & Jones, P. A. (2009). Epigenetics in cancer. Carcinogenesis, 31(1), 27-36. https://doi.org/10.1093/carcin/bgp220
Sjamsuridzal, W., Oetari, A., Kanti, A., Saraswati, R., Nakashima, C., Widyastuti, Y., & Katsuhiko, A. (2010). Ecological and Taxonomical Perspective of Yeasts in Indonesia. Microbiology Indonesia, 4(2), 60-68. Retrieved from http://repository.ipb.ac.id/handle/123456789/43088
Sjamsuridzal, W., Oetari, A., Nakashima, C., Kanti, A., Saraswati, R., Widyastuti, Y., & Ando, K. (2013). New Species of the Genus Metschnikowia Isolated from Flowers in Indonesia, Metschnikowia cibodasensis sp. nov. Journal of Microbiology and Biotechnology, 23(7), 905-912. https://doi.org/10.4014/jmb.1301.01005
Sianipar, R. N. R., Sutriah, K., Iswantini, D., Trivadila, & Achmadi, S. S. (2024). Antigout Activity of The Spatholobus littoralis Hassk. Extract Fractions Against Xanthine Oxidase: Its Metabolite Profile and Inhibition Kinetics. Hayati Journal of Biosciences, 31(1), 1-20. https://doi.org/10.4308/hjb.31.1.1-20
Sitepu, B. S., Chasani, A. R., Mukhlisi, M., Atmoko, T., Adman, B., & Prihatini, I. (2024). Camptostemon philippinensis, a new record of endangered mangrove species in the Balikpapan Bay, East Kalimantan, Indonesia. F1000Research, 12(1394). https://doi.org/10.12688/f1000research.140887.3
Sodhi, N. S., Koh, L. P., Brook, B. W., & Ng, P. K. L. (2004). Southeast Asian biodiversity: an impending disaster. Trends in Ecology & Evolution, 19(12), 654-660. https://doi.org/10.1016/j.tree.2004.09.006
Sumadijaya, A., Agustiani, E. L., Senjaya, S. K., & Wulansari, T. Y. I. (2025). Reinwardtia: 75 years of endeavour investigating Indonesia’s botany and beyond. Reinwardtia, 24(1), 137–144. https://doi.org/10.14203/reinwardtia.v24i1.591
Sun, J., Liu, B., Rustiami, H., Xiao, H., Shen, X., & Ma, K. (2024). Mapping Asia Plants: Plant Diversity and a Checklist of Vascular Plants in Indonesia. Plants, 13(16), 2281. https://doi.org/10.3390/plants13162281
Syamsiah, S., Hiola, S. F., Mu'nisa, A., Bando, Y., & Alam, N. (2016). Study on medicinal plants used by the ethnic Mamuju in West Sulawesi, Indonesia. Journal of Tropical Crop Science, 3(2), 43-48. https://doi.org/10.29244/jtcs.3.2.43-48
Tailor, N. K., Deswal, G., Grewal, A. S., & Guarve, K. (2025). Oroidins: Marine pyrrole-imidazole alkaloids with emerging therapeutic potential. Current Topics in Medicinal Chemistry.
https://doi.org/10.2174/0115680266391437250909024350
Tajuddin, Ahmad, S., Latif, A., Qasmi, I. A., & Amin, K. M. Y. (2005). An experimental study of sexual function improving effect of Myristica fragrans Houtt. (nutmeg). BMC Complementary Medicine and Therapies, 5(16). https://doi.org/10.1186/1472-6882-5-16
Talbert, P., & Henikoff, S. (2016). Histone variants on the move: substrates for chromatin dynamics. Nature Reviews Molecular Cell Biology, 18, 115-126. https://doi.org/10.1038/nrm.2016.148
Temel, A., Janack, B., & Humbeck, K. (2015). Epigenetic regulation in plants. Encyclopedia of Life Sciences. https://doi.org/10.1002/9780470015902.A0021848
Uckelmann, M., & Sixma, T. K. (2017). Histone ubiquitination in the DNA damage response. DNA Repair, 56, 92-101. https://doi.org/10.1016/j.dnarep.2017.06.011
Utina, R., Katili, A. S., Lapolo, N., & Dangkua, T. (2019). Short Communication: The composition of mangrove species in coastal area of Banggai District, Central Sulawesi, Indonesia. Biodiversitas, 20(3), 840–846. https://doi.org/10.13057/biodiv/d200330
van Steenis C. G. G. J. (2010). Flora Pegunungan Jawa. Indonesia: LIPI Press.
Verdin, E., & Ott, M. (2015). 50 years of protein acetylation: From gene regulation to epigenetics, metabolism and beyond. Nature Reviews Molecular Cell Biology, 16(4), 258-264. https://doi.org/10.1038/nrm3931
Waddington, C. H. (1942). The epigenotype. International Journal of Epidemiology, 41(1). https://doi.org/10.1093/ije/dyr184
Wang J., Lawry S. T., Cohen A. L., & Jia S. (2014) Chromosome boundary elements and regulation of heterochromatin spreading. Cell and Molecular Life Sciences, 71, 4841-4852. https://doi.org/10.1007/s00018-014-1725-x
Wang, B., Shao, X., Song, R., Xu, D., & Zhang, J. A. (2017). The emerging role of epigenetics in autoimmune thyroid diseases. In Frontiers in Immunology, 8. https://doi.org/10.3389/fimmu.2017.00396
Wang, Y., Dai, A., Chen, Y., & Tang, T. (2021). Gene Body Methylation Confers Transcription Robustness in Mangroves During Long-Term Stress Adaptation. Frontiers in Plant Science, 22. https://doi.org/10.3389/fpls.2021.733846
Wang, X., Lv, X., Ma, J., & Xu, G. (2024). UFMylation: An Integral Post-Translational Modification for the Regulation of Proteostasis and Cellular Functions. Pharmacology & Therapeutics, 260, 108680. https://doi.org/10.1016/j.pharmthera.2024.108680
Wirasisya, D. G., Kincses, A., Vidács, L., Szemerédi, N., Spengler, G., Barta, A., Mertha, I. G., & Hohmann, J. (2023). Indonesian Euphorbiaceae: Ethnobotanical survey, in vitro antibacterial, antitumour screening and phytochemical analysis of Euphorbia atoto. Plants, 12(22), 3836. https://doi.org/10.3390/plants12223836
Wotton, D., Pemberton, L. F., & Merrill-Schools, J. (2017). SUMO and chromatin remodeling. Advances in Experimental Medicine and Biology, 963, 35-50. https://doi.org/10.1007/978-3-319-50044-7_3
Zheng, K., Zhou, Y., Ba, T., Yang, Z. (2025). Prospects and challenges of novel natural marine-derived compounds in melanoma treatment. World Journal of Clinical Oncology, 16(9), 109079.
https://doi.org/10.5306/wjco.v16.i9.109079
Zilberman, D., Coleman-Derr, D., Ballinger, T., Henikoff, S. (2008). Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature, 456(7218):125-129. https://doi.org/10.1038/nature07324
License
Copyright (c) 2025 Anisa Fitri Rahayu

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






