Vol. 11 No. 11 (2025): November
Open Access
Peer Reviewed

Development and Performance Validation of a Prototype Digital pH and Temperature Meter for Consumer Applications

Authors

Ikhsan Siregar , Joiverdia Arifiyanto , Rulianda Purnomo Wibowo , Mahatir Muhammad

DOI:

10.29303/jppipa.v11i11.12434

Published:

2025-11-25

Downloads

Abstract

This study aims to develop and evaluate an Arduino-based digital pH meter and thermometer prototype equipped with automatic temperature compensation (ATC) and a 3D-printed casing for practical household and micro-industrial applications. The device was tested on fifteen consumer products from four categories—food, beverages, hygiene, and cosmetics—at three temperature levels (30°C, 35°C, and 40°C). Measured parameters included pH, millivolt (mV) outputs, stabilization time, and reading stability. The results showed that pH values decreased with increasing temperature, consistent with H⁺ ion dissociation principles. For example, vinegar (pH 2.80–2.68) and soda (pH 3.45–3.36) showed the most significant decreases, while basic products such as detergent (pH 10.20–10.08) and liquid soap (pH 9.10–9.00) exhibited stable negative mV readings. The average stabilization time ranged from 6 to 12 seconds, with all samples showing stable readings (±0.01 pH variation). Calibration results indicated that three-point calibration (pH 4, 7, 10) produced the highest accuracy (±0.04 pH; R² = 0.993). The 3D-printed PLA casing provided durable protection, ergonomic handling, and fast reprintability. Overall, the prototype demonstrated reliable, accurate, and stable performance, proving that low-cost hardware and software integration can yield an efficient and accessible pH and temperature measuring tool.

Keywords:

3D printing Digital temperature pH meter Product validation Temperature compensation

References

Adeleke, I., Nwulu, N., & Adebo, O. A. (2023). Internet of Things (IoT) in the food fermentation process: A bibliometric review. Journal of Food Process Engineering, 46(5), e14321. https://doi.org/10.1111/jfpe.14321

Alam, A. U., Clyne, D., & Deen, M. J. (2021). A low-cost multi-parameter water quality monitoring system. Sensors, 21(11). https://doi.org/10.3390/s21113775

Ali, A., Deen, J., Sarawanan, T. C., Rajagopal, H., Sethu, D., Jothi, N., & Kolandaisamy, R. (2023). Arduino Based Smart IoT Food Quality Monitoring System. Retrieved from https://alife-robotics.co.jp/members2023/icarob/data/html/data/OS/OS1/OS1-1.pdf

Arman, M. A., & Tampère, C. M. J. (2020). Road centreline and lane reconstruction from pervasive GPS tracking on motorways. Procedia Computer Science, 170, 434–441. https://doi.org/10.1016/j.procs.2020.03.086

Aspin, Nugroho, I. A., Abubakar, & Suleman, M. A. (2025). Integration Internet of Things (IoT) and ChatGpt in the Teaching of Photosynthesis and Water Quality at SDN 2 Lebo. Jurnal Penelitian Pendidikan IPA, 11(7), 844–853. https://doi.org/10.29303/jppipa.v11i7.12156

Aulia, A. P., Syaifudin, A., & Novianto, I. (2024). Optimasi Produksi Filamen 3D dari Sampah Plastik: Studi Eksperimental Suhu Heater. Techné: Jurnal Ilmiah Elektroteknika, 23(2), 245-256. https://doi.org/10.31358/techne.v23i2.465

Bajre, G. K., Jeswin Anto, L., Joseph, T., Kandasubramanian, B., & Patadiya, J. (2025). Optimizing The Design of 3D Printed Sensors Through Electrochemical Analysis. Biomedical Materials and Devices, 3(2), 1177–1182. https://doi.org/10.1007/s44174-024-00210-3

Botero-Valencia, J. S., Mejia-Herrera, M., & Pearce, J. M. (2022). Design and implementation of 3-D printed radiation shields for environmental sensors. HardwareX, 11. https://doi.org/10.1016/j.ohx.2022.e00267

Briciu-Burghina, C., Zhou, J., Ali, M. I., & Regan, F. (2022). Demonstrating the Potential of a Low-Cost Soil Moisture Sensor Network. Sensors, 22(3). https://doi.org/10.3390/s22030987

Chawang, K., Bing, S., & Chiao, J. C. (2022). Effects of Viscosity and Salt Interference for Planar Iridium Oxide and Silver Chloride pH Sensing Electrodes on Flexible Substrate. Chemosensors, 10(9). https://doi.org/10.3390/chemosensors10090371

Chowdury, M. S. U., Emran, T. Bin, Ghosh, S., Pathak, A., Alam, M. M., Absar, N., Andersson, K., & Hossain, M. S. (2019). IoT based real-time river water quality monitoring system. Procedia Computer Science, 155, 161–168. https://doi.org/10.1016/j.procs.2019.08.025

de Camargo, E. T., Spanhol, F. A., Slongo, J. S., da Silva, M. V. R., Pazinato, J., de Lima Lobo, A. V., Coutinho, F. R., Pfrimer, F. W. D., Lindino, C. A., Oyamada, M. S., & Martins, L. D. (2023). Low-Cost Water Quality Sensors for IoT: A Systematic Review. In Sensors (Vol. 23, Issue 9). MDPI. https://doi.org/10.3390/s23094424

Flores-Iwasaki, M., Guadalupe, G. A., Pachas-Caycho, M., Chapa-Gonza, S., Mori-Zabarburú, R. C., & Guerrero-Abad, J. C. (2025). Internet of Things (IoT) Sensors for Water Quality Monitoring in Aquaculture Systems: A Systematic Review and Bibliometric Analysis. In AgriEngineering (Vol. 7, Issue 3). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/agriengineering7030078

Hastuti, A., Lestari, T. A., & Fulazzaky, M. A. (2022). Assistance Of Quality Control Of Yoghurt Production Process. Qardhul Hasan: Media Pengabdian kepada Masyarakat, 8(3), 237-241. https://doi.org/10.30997/qh.v8i3.6628

Hendrawan, A., Lubis, G. S., & Wicaksono, R. A. (2023). Optimasi Parameter Proses Terhadap Geometris Dimensi Pada Proses Cetak 3D Printing Berbahan Polyethylene Terephthalate (PET) Menggunakan Metode Taguchi. JTRAIN: Jurnal Teknologi Rekayasa Teknik Mesin, 4(1), 30-37. Retrieved from https://jurnal.untan.ac.id/index.php/jtm/article/view/62910/0

Hendri, M., Rasmi, D. P., Andika, N., & Wibisana, S. S. (2025). Integration of Arduino Uno and IoT Concepts in the Development of Magnetic Field Learning Media: A Qualitative Descriptive Study. Jurnal Penelitian Pendidikan IPA, 11(8), 785–797. https://doi.org/10.29303/jppipa.v11i8.12178

Hong, W. J., Shamsuddin, N., Abas, E., Apong, R. A., Masri, Z., Suhaimi, H., Gödeke, S. H., & Noh, M. N. A. (2021). Water quality monitoring with arduino based sensors. Environments - MDPI, 8(1), 1–15. https://doi.org/10.3390/environments8010006

Ismaini, I., Tosani, N., & Sutanto, D. (2023). Perbandingan Unjuk Kinerja Berbagai Tipe pH Meter Digital Pada Pengujian Sampel Tanah dan Air Berdasarkan Iso 17025:2017. Jurnal Penelitian Sains, 25(1), 24. https://doi.org/10.56064/jps.v25i1.727

Jufrida, Falah, H. S., & Sehab, N. H. (2023). Development of An Audio Frequency Meter with Arduino and MAX4466 Sound Sensor. Jurnal Penelitian Pendidikan IPA, 9(11), 10280–10286. https://doi.org/10.29303/jppipa.v9i11.6144

Kelechi, A. H., Alsharif, M. H., Anya, A. C. E., Bonet, M. U., Uyi, S. A., Uthansakul, P., Nebhen, J., & Aly, A. A. (2021). Design and Implementation of a Low-Cost Portable Water Quality Monitoring System. Computers, Materials and Continua, 69(2), 2405–2424. https://doi.org/10.32604/cmc.2021.018686

Kharim, M. A., Andrasto, T., Suni, A. F., Fathoni, K., & Abdul, M. (2025). Sistem Kontrol dan Monitoring Kualitas Air Reverse Osmosis (RO) Menggunakan Fuzzy Logic Metode Sugeno Berbasis Internet of Things. Journal Of Social Science Research, 5(3). https://doi.org/10.31004/innovative.v5i3.18904

Kumar, A., Castro, M., & Feller, J. F. (2023). Review on Sensor Array-Based Analytical Technologies for Quality Control of Food and Beverages. In Sensors (Vol. 23, Issue 8). MDPI. https://doi.org/10.3390/s23084017

Matsun, Pramuda, A., Hadiati, S., & Pratama, H. (2023). Development of Density Meter Learning Media Using Arduino Uno to Improve Critical Thinking Abilities. Jurnal Penelitian Pendidikan IPA, 9(10), 8321–8327. https://doi.org/10.29303/jppipa.v9i10.5207

McCole, M., Bradley, M., McCaul, M., & McCrudden, D. (2023). A low-cost portable system for on-site detection of soil pH and potassium levels using 3D printed sensors. Results in Engineering, 20. https://doi.org/10.1016/j.rineng.2023.101564

Mclean, K. M., Pasulka, A. L., & Bockmon, E. E. (2021). A low-cost, accessible, and high-performing Arduino-based seawater pH control system for biological applications. HardwareX, 10, e00247. https://doi.org/10.17605/OSF.IO/3CDVZ

Mesquita, P., Gong, L., & Lin, Y. (2022). Low-cost microfluidics: Towards affordable environmental monitoring and assessment. Frontiers in Lab on a Chip Technologies, 1. https://doi.org/10.3389/frlct.2022.1074009

Miller, D. J., Roach, G. D., Lastella, M., Scanlan, A. T., Bellenger, C. R., Halson, S. L., & Sargent, C. (2021). A validation study of a commercial wearable device to automatically detect and estimate sleep. Biosensors, 11(6). https://doi.org/10.3390/bios11060185

Nair, N., Akshaya, A. V., John Bosco, M., Ananthasuresh, G. K., & Joseph, J. (2025). A Robust Sensor for Inline pH Measurements. IEEE Sensors Journal, 25(1), 167–174. https://doi.org/10.1109/JSEN.2024.3489659

Novita Wardhani, R., Danaryani, S., Setiowati, S., Teknik Elektro, J., Negeri Jakarta, P., Siwabessy, J. D., & Beji, K. (2022). Desain Sistem Monitoring Cerdas Kualitas Air Keramba Budidaya Teripang Berbasis Iot. Jurnal Ilmiah Matrik, 24(1). https://doi.org/10.33557/jurnalmatrik.v24i1.1648

Onthank, K. L., Foster, J., Preston Carman, E., Foster, J. E., Culler-Juarez, M., Calvo, E., Duerksen, W., Natiuk, T., & Saca, L. (2023). The Open acidification Tank Controller: An open-source device for the control of pH and temperature in ocean acidification experiments. HardwareX, 14. https://doi.org/10.1016/j.ohx.2023.e00435

Pandey, S., Chaudhary, M., & Tóth, Z. (2025). An investigation on real-time insights: enhancing process control with IoT-enabled sensor networks. In Discover Internet of Things (Vol. 5, Issue 1). Springer Nature. https://doi.org/10.1007/s43926-025-00124-6

Parra, L., Viciano-Tudela, S., Carrasco, D., Sendra, S., & Lloret, J. (2023). Low-Cost Microcontroller-Based Multiparametric Probe for Coastal Area Monitoring. Sensors, 23(4). https://doi.org/10.3390/s23041871

Placidi, P., Morbidelli, R., Fortunati, D., Papini, N., Gobbi, F., & Scorzoni, A. (2021). Monitoring soil and ambient parameters in the iot precision agriculture scenario: An original modeling approach dedicated to low-cost soil water content sensors. Sensors, 21(15). https://doi.org/10.3390/s21155110

Pramuda, A., Hadiati, S., Matsun, & Safitri, W. (2023). Developing A Viscometer Educational Aid Using Arduino Uno to Increase Scientific Attitude. Jurnal Penelitian Pendidikan IPA, 9(11), 9711–9717. https://doi.org/10.29303/jppipa.v9i11.3135

Pratamaa, I. P. Y. P., Wibawaa, K. S., & Suarjaya, I. M. A. D. (2022). Perancangan PH Meter Dengan Sensor PH Air Berbasis Arduino. Jurnal Ilmiah Teknologi dan Komputer, 3(2). https://doi.org/10.24843/JTRTI.2022.v03.i02.p02

Qutieshat, A., Aouididi, R., & Arfaoui, R. (2019). Design and Construction of a Low-Cost Arduino-Based pH Sensor for the Visually Impaired Using Universal pH Paper. Journal of Chemical Education, 96(10), 2333–2338. https://doi.org/10.1021/acs.jchemed.9b00450

Rumanta, M., Kunda, R. M., & Manuhutu, F. (2024). Biosensors Perancangan dan Pengembangan Biosensor untuk Deteksi Kualitas Perairan Laut Berbasis Piranti Mikrokontroler ESP32. Jurnal Penelitian Pendidikan IPA, 10(6), 3131–3136. https://doi.org/10.29303/jppipa.v10i6.6944

Saefudin, S., Cahyandari, D., Afif, I. Y., Raharjo, S., Subri, M., & Irawan, B. (2023). Analisa Parameter Pencetakan Terhadap Sifat Mekanik Polylactic Acid Menggunakan Mesin Cetak 3 Dimensi Fused Deposition Modelling. Jurnal Rekayasa Mesin, 18(2), 193-204. Retrieved from https://jurnal.polines.ac.id/index.php/rekayasa

Sari, I. P., Novita, A., Al-Khowarizmi, A.-K., Ramadhani, F., & Satria, A. (2024). Pemanfaatan Internet of Things (IoT) pada Bidang Pertanian Menggunakan Arduino UnoR3. Blend Sains Jurnal Teknik, 2(4), 337–343. https://doi.org/10.56211/blendsains.v2i4.505

Simamarta, A. D., Nisa, V. K., Maulana, R., Parawansa, N., Khairunnisa, I., & Budiawati, Y. (2025). Kajian Literatur: Penerapan Internet of Things (IoT) untuk Optimasi Manajemen Kesehatan Tanah. Hidroponik : Jurnal Ilmu Pertanian Dan Teknologi Dalam Ilmu Tanaman, 2(2), 91–107. https://doi.org/10.62951/hidroponik.v2i2.402

Stoica, D., Anes, B. V., Fisicaro, P., & Camões, M. F. (2021). Feasibility of multifunction calibration of H+-responsive glass electrodes in seawater (IUPAC Technical Report). Pure and Applied Chemistry, 93(12), 1487–1497. https://doi.org/10.1515/pac-2020-0202

Sugiharto, W. H., Susanto, H., & Prasetijo, A. B. (2023). Real-Time Water Quality Assessment via IoT: Monitoring pH, TDS, Temperature, and Turbidity. Ingenierie Des Systemes d’Information, 28(4), 823–831. https://doi.org/10.18280/isi.280403

Sukardjo, M., Oktaviani, V., Tawari, S., Alfajar, I., & Ichsan, I. Z. (2023). Design of Control System Trainer Based on IoT as Electronic Learning Media for Natural Science Course. Jurnal Penelitian Pendidikan IPA, 9(2), 952–958. https://doi.org/10.29303/jppipa.v9i2.3097

Tiwari, R., & Mahalpure, G. S. (2025). A Detailed Review of pH and its Applications. Journal of Pharmaceutical and Biopharmaceutical Research, 6(2), 492–505. https://doi.org/10.25082/jpbr.2024.02.001

Topan Indra, A., Harmadi, H., & Marzuki, M. (2023). Prototype of Forest and Land Fire Monitoring and Detection System Using IoT-Based WSN Technology. Jurnal Penelitian Pendidikan IPA, 9(12), 11837–11845. https://doi.org/10.29303/jppipa.v9i12.5736

Tümer, E. H., & Erbil, H. Y. (2021). Extrusion-based 3d printing applications of pla composites: A review. In Coatings (Vol. 11, Issue 4). MDPI AG. https://doi.org/10.3390/coatings11040390

Wang, H., Qi, H., Sun, X., Jia, S., Li, X., Miao, T. J., Xiong, L., Wang, S., Zhang, X., Liu, X., Wang, A., Zhang, T., Huang, W., & Tang, J. (2023). High quantum efficiency of hydrogen production from methanol aqueous solution with PtCu–TiO2 photocatalysts. Nature Materials, 22(5), 619–626. https://doi.org/10.1038/s41563-023-01519-y

Author Biographies

Ikhsan Siregar, Universitas Sumatera Utara

Author Origin : Indonesia

Joiverdia Arifiyanto, Universitas Sumatera Utara

Author Origin : Indonesia

Rulianda Purnomo Wibowo, Universitas Sumatera Utara

Author Origin : Indonesia

Mahatir Muhammad, Universitas Sumatera Utara

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Siregar, I., Arifiyanto, J., Wibowo, R. P., & Muhammad, M. (2025). Development and Performance Validation of a Prototype Digital pH and Temperature Meter for Consumer Applications. Jurnal Penelitian Pendidikan IPA, 11(11), 1067–1074. https://doi.org/10.29303/jppipa.v11i11.12434