Development and Performance Validation of a Prototype Digital pH and Temperature Meter for Consumer Applications
DOI:
10.29303/jppipa.v11i11.12434Published:
2025-11-25Downloads
Abstract
This study aims to develop and evaluate an Arduino-based digital pH meter and thermometer prototype equipped with automatic temperature compensation (ATC) and a 3D-printed casing for practical household and micro-industrial applications. The device was tested on fifteen consumer products from four categories—food, beverages, hygiene, and cosmetics—at three temperature levels (30°C, 35°C, and 40°C). Measured parameters included pH, millivolt (mV) outputs, stabilization time, and reading stability. The results showed that pH values decreased with increasing temperature, consistent with H⁺ ion dissociation principles. For example, vinegar (pH 2.80–2.68) and soda (pH 3.45–3.36) showed the most significant decreases, while basic products such as detergent (pH 10.20–10.08) and liquid soap (pH 9.10–9.00) exhibited stable negative mV readings. The average stabilization time ranged from 6 to 12 seconds, with all samples showing stable readings (±0.01 pH variation). Calibration results indicated that three-point calibration (pH 4, 7, 10) produced the highest accuracy (±0.04 pH; R² = 0.993). The 3D-printed PLA casing provided durable protection, ergonomic handling, and fast reprintability. Overall, the prototype demonstrated reliable, accurate, and stable performance, proving that low-cost hardware and software integration can yield an efficient and accessible pH and temperature measuring tool.
Keywords:
3D printing Digital temperature pH meter Product validation Temperature compensationReferences
Adeleke, I., Nwulu, N., & Adebo, O. A. (2023). Internet of Things (IoT) in the food fermentation process: A bibliometric review. Journal of Food Process Engineering, 46(5), e14321. https://doi.org/10.1111/jfpe.14321
Alam, A. U., Clyne, D., & Deen, M. J. (2021). A low-cost multi-parameter water quality monitoring system. Sensors, 21(11). https://doi.org/10.3390/s21113775
Ali, A., Deen, J., Sarawanan, T. C., Rajagopal, H., Sethu, D., Jothi, N., & Kolandaisamy, R. (2023). Arduino Based Smart IoT Food Quality Monitoring System. Retrieved from https://alife-robotics.co.jp/members2023/icarob/data/html/data/OS/OS1/OS1-1.pdf
Arman, M. A., & Tampère, C. M. J. (2020). Road centreline and lane reconstruction from pervasive GPS tracking on motorways. Procedia Computer Science, 170, 434–441. https://doi.org/10.1016/j.procs.2020.03.086
Aspin, Nugroho, I. A., Abubakar, & Suleman, M. A. (2025). Integration Internet of Things (IoT) and ChatGpt in the Teaching of Photosynthesis and Water Quality at SDN 2 Lebo. Jurnal Penelitian Pendidikan IPA, 11(7), 844–853. https://doi.org/10.29303/jppipa.v11i7.12156
Aulia, A. P., Syaifudin, A., & Novianto, I. (2024). Optimasi Produksi Filamen 3D dari Sampah Plastik: Studi Eksperimental Suhu Heater. Techné: Jurnal Ilmiah Elektroteknika, 23(2), 245-256. https://doi.org/10.31358/techne.v23i2.465
Bajre, G. K., Jeswin Anto, L., Joseph, T., Kandasubramanian, B., & Patadiya, J. (2025). Optimizing The Design of 3D Printed Sensors Through Electrochemical Analysis. Biomedical Materials and Devices, 3(2), 1177–1182. https://doi.org/10.1007/s44174-024-00210-3
Botero-Valencia, J. S., Mejia-Herrera, M., & Pearce, J. M. (2022). Design and implementation of 3-D printed radiation shields for environmental sensors. HardwareX, 11. https://doi.org/10.1016/j.ohx.2022.e00267
Briciu-Burghina, C., Zhou, J., Ali, M. I., & Regan, F. (2022). Demonstrating the Potential of a Low-Cost Soil Moisture Sensor Network. Sensors, 22(3). https://doi.org/10.3390/s22030987
Chawang, K., Bing, S., & Chiao, J. C. (2022). Effects of Viscosity and Salt Interference for Planar Iridium Oxide and Silver Chloride pH Sensing Electrodes on Flexible Substrate. Chemosensors, 10(9). https://doi.org/10.3390/chemosensors10090371
Chowdury, M. S. U., Emran, T. Bin, Ghosh, S., Pathak, A., Alam, M. M., Absar, N., Andersson, K., & Hossain, M. S. (2019). IoT based real-time river water quality monitoring system. Procedia Computer Science, 155, 161–168. https://doi.org/10.1016/j.procs.2019.08.025
de Camargo, E. T., Spanhol, F. A., Slongo, J. S., da Silva, M. V. R., Pazinato, J., de Lima Lobo, A. V., Coutinho, F. R., Pfrimer, F. W. D., Lindino, C. A., Oyamada, M. S., & Martins, L. D. (2023). Low-Cost Water Quality Sensors for IoT: A Systematic Review. In Sensors (Vol. 23, Issue 9). MDPI. https://doi.org/10.3390/s23094424
Flores-Iwasaki, M., Guadalupe, G. A., Pachas-Caycho, M., Chapa-Gonza, S., Mori-Zabarburú, R. C., & Guerrero-Abad, J. C. (2025). Internet of Things (IoT) Sensors for Water Quality Monitoring in Aquaculture Systems: A Systematic Review and Bibliometric Analysis. In AgriEngineering (Vol. 7, Issue 3). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/agriengineering7030078
Hastuti, A., Lestari, T. A., & Fulazzaky, M. A. (2022). Assistance Of Quality Control Of Yoghurt Production Process. Qardhul Hasan: Media Pengabdian kepada Masyarakat, 8(3), 237-241. https://doi.org/10.30997/qh.v8i3.6628
Hendrawan, A., Lubis, G. S., & Wicaksono, R. A. (2023). Optimasi Parameter Proses Terhadap Geometris Dimensi Pada Proses Cetak 3D Printing Berbahan Polyethylene Terephthalate (PET) Menggunakan Metode Taguchi. JTRAIN: Jurnal Teknologi Rekayasa Teknik Mesin, 4(1), 30-37. Retrieved from https://jurnal.untan.ac.id/index.php/jtm/article/view/62910/0
Hendri, M., Rasmi, D. P., Andika, N., & Wibisana, S. S. (2025). Integration of Arduino Uno and IoT Concepts in the Development of Magnetic Field Learning Media: A Qualitative Descriptive Study. Jurnal Penelitian Pendidikan IPA, 11(8), 785–797. https://doi.org/10.29303/jppipa.v11i8.12178
Hong, W. J., Shamsuddin, N., Abas, E., Apong, R. A., Masri, Z., Suhaimi, H., Gödeke, S. H., & Noh, M. N. A. (2021). Water quality monitoring with arduino based sensors. Environments - MDPI, 8(1), 1–15. https://doi.org/10.3390/environments8010006
Ismaini, I., Tosani, N., & Sutanto, D. (2023). Perbandingan Unjuk Kinerja Berbagai Tipe pH Meter Digital Pada Pengujian Sampel Tanah dan Air Berdasarkan Iso 17025:2017. Jurnal Penelitian Sains, 25(1), 24. https://doi.org/10.56064/jps.v25i1.727
Jufrida, Falah, H. S., & Sehab, N. H. (2023). Development of An Audio Frequency Meter with Arduino and MAX4466 Sound Sensor. Jurnal Penelitian Pendidikan IPA, 9(11), 10280–10286. https://doi.org/10.29303/jppipa.v9i11.6144
Kelechi, A. H., Alsharif, M. H., Anya, A. C. E., Bonet, M. U., Uyi, S. A., Uthansakul, P., Nebhen, J., & Aly, A. A. (2021). Design and Implementation of a Low-Cost Portable Water Quality Monitoring System. Computers, Materials and Continua, 69(2), 2405–2424. https://doi.org/10.32604/cmc.2021.018686
Kharim, M. A., Andrasto, T., Suni, A. F., Fathoni, K., & Abdul, M. (2025). Sistem Kontrol dan Monitoring Kualitas Air Reverse Osmosis (RO) Menggunakan Fuzzy Logic Metode Sugeno Berbasis Internet of Things. Journal Of Social Science Research, 5(3). https://doi.org/10.31004/innovative.v5i3.18904
Kumar, A., Castro, M., & Feller, J. F. (2023). Review on Sensor Array-Based Analytical Technologies for Quality Control of Food and Beverages. In Sensors (Vol. 23, Issue 8). MDPI. https://doi.org/10.3390/s23084017
Matsun, Pramuda, A., Hadiati, S., & Pratama, H. (2023). Development of Density Meter Learning Media Using Arduino Uno to Improve Critical Thinking Abilities. Jurnal Penelitian Pendidikan IPA, 9(10), 8321–8327. https://doi.org/10.29303/jppipa.v9i10.5207
McCole, M., Bradley, M., McCaul, M., & McCrudden, D. (2023). A low-cost portable system for on-site detection of soil pH and potassium levels using 3D printed sensors. Results in Engineering, 20. https://doi.org/10.1016/j.rineng.2023.101564
Mclean, K. M., Pasulka, A. L., & Bockmon, E. E. (2021). A low-cost, accessible, and high-performing Arduino-based seawater pH control system for biological applications. HardwareX, 10, e00247. https://doi.org/10.17605/OSF.IO/3CDVZ
Mesquita, P., Gong, L., & Lin, Y. (2022). Low-cost microfluidics: Towards affordable environmental monitoring and assessment. Frontiers in Lab on a Chip Technologies, 1. https://doi.org/10.3389/frlct.2022.1074009
Miller, D. J., Roach, G. D., Lastella, M., Scanlan, A. T., Bellenger, C. R., Halson, S. L., & Sargent, C. (2021). A validation study of a commercial wearable device to automatically detect and estimate sleep. Biosensors, 11(6). https://doi.org/10.3390/bios11060185
Nair, N., Akshaya, A. V., John Bosco, M., Ananthasuresh, G. K., & Joseph, J. (2025). A Robust Sensor for Inline pH Measurements. IEEE Sensors Journal, 25(1), 167–174. https://doi.org/10.1109/JSEN.2024.3489659
Novita Wardhani, R., Danaryani, S., Setiowati, S., Teknik Elektro, J., Negeri Jakarta, P., Siwabessy, J. D., & Beji, K. (2022). Desain Sistem Monitoring Cerdas Kualitas Air Keramba Budidaya Teripang Berbasis Iot. Jurnal Ilmiah Matrik, 24(1). https://doi.org/10.33557/jurnalmatrik.v24i1.1648
Onthank, K. L., Foster, J., Preston Carman, E., Foster, J. E., Culler-Juarez, M., Calvo, E., Duerksen, W., Natiuk, T., & Saca, L. (2023). The Open acidification Tank Controller: An open-source device for the control of pH and temperature in ocean acidification experiments. HardwareX, 14. https://doi.org/10.1016/j.ohx.2023.e00435
Pandey, S., Chaudhary, M., & Tóth, Z. (2025). An investigation on real-time insights: enhancing process control with IoT-enabled sensor networks. In Discover Internet of Things (Vol. 5, Issue 1). Springer Nature. https://doi.org/10.1007/s43926-025-00124-6
Parra, L., Viciano-Tudela, S., Carrasco, D., Sendra, S., & Lloret, J. (2023). Low-Cost Microcontroller-Based Multiparametric Probe for Coastal Area Monitoring. Sensors, 23(4). https://doi.org/10.3390/s23041871
Placidi, P., Morbidelli, R., Fortunati, D., Papini, N., Gobbi, F., & Scorzoni, A. (2021). Monitoring soil and ambient parameters in the iot precision agriculture scenario: An original modeling approach dedicated to low-cost soil water content sensors. Sensors, 21(15). https://doi.org/10.3390/s21155110
Pramuda, A., Hadiati, S., Matsun, & Safitri, W. (2023). Developing A Viscometer Educational Aid Using Arduino Uno to Increase Scientific Attitude. Jurnal Penelitian Pendidikan IPA, 9(11), 9711–9717. https://doi.org/10.29303/jppipa.v9i11.3135
Pratamaa, I. P. Y. P., Wibawaa, K. S., & Suarjaya, I. M. A. D. (2022). Perancangan PH Meter Dengan Sensor PH Air Berbasis Arduino. Jurnal Ilmiah Teknologi dan Komputer, 3(2). https://doi.org/10.24843/JTRTI.2022.v03.i02.p02
Qutieshat, A., Aouididi, R., & Arfaoui, R. (2019). Design and Construction of a Low-Cost Arduino-Based pH Sensor for the Visually Impaired Using Universal pH Paper. Journal of Chemical Education, 96(10), 2333–2338. https://doi.org/10.1021/acs.jchemed.9b00450
Rumanta, M., Kunda, R. M., & Manuhutu, F. (2024). Biosensors Perancangan dan Pengembangan Biosensor untuk Deteksi Kualitas Perairan Laut Berbasis Piranti Mikrokontroler ESP32. Jurnal Penelitian Pendidikan IPA, 10(6), 3131–3136. https://doi.org/10.29303/jppipa.v10i6.6944
Saefudin, S., Cahyandari, D., Afif, I. Y., Raharjo, S., Subri, M., & Irawan, B. (2023). Analisa Parameter Pencetakan Terhadap Sifat Mekanik Polylactic Acid Menggunakan Mesin Cetak 3 Dimensi Fused Deposition Modelling. Jurnal Rekayasa Mesin, 18(2), 193-204. Retrieved from https://jurnal.polines.ac.id/index.php/rekayasa
Sari, I. P., Novita, A., Al-Khowarizmi, A.-K., Ramadhani, F., & Satria, A. (2024). Pemanfaatan Internet of Things (IoT) pada Bidang Pertanian Menggunakan Arduino UnoR3. Blend Sains Jurnal Teknik, 2(4), 337–343. https://doi.org/10.56211/blendsains.v2i4.505
Simamarta, A. D., Nisa, V. K., Maulana, R., Parawansa, N., Khairunnisa, I., & Budiawati, Y. (2025). Kajian Literatur: Penerapan Internet of Things (IoT) untuk Optimasi Manajemen Kesehatan Tanah. Hidroponik : Jurnal Ilmu Pertanian Dan Teknologi Dalam Ilmu Tanaman, 2(2), 91–107. https://doi.org/10.62951/hidroponik.v2i2.402
Stoica, D., Anes, B. V., Fisicaro, P., & Camões, M. F. (2021). Feasibility of multifunction calibration of H+-responsive glass electrodes in seawater (IUPAC Technical Report). Pure and Applied Chemistry, 93(12), 1487–1497. https://doi.org/10.1515/pac-2020-0202
Sugiharto, W. H., Susanto, H., & Prasetijo, A. B. (2023). Real-Time Water Quality Assessment via IoT: Monitoring pH, TDS, Temperature, and Turbidity. Ingenierie Des Systemes d’Information, 28(4), 823–831. https://doi.org/10.18280/isi.280403
Sukardjo, M., Oktaviani, V., Tawari, S., Alfajar, I., & Ichsan, I. Z. (2023). Design of Control System Trainer Based on IoT as Electronic Learning Media for Natural Science Course. Jurnal Penelitian Pendidikan IPA, 9(2), 952–958. https://doi.org/10.29303/jppipa.v9i2.3097
Tiwari, R., & Mahalpure, G. S. (2025). A Detailed Review of pH and its Applications. Journal of Pharmaceutical and Biopharmaceutical Research, 6(2), 492–505. https://doi.org/10.25082/jpbr.2024.02.001
Topan Indra, A., Harmadi, H., & Marzuki, M. (2023). Prototype of Forest and Land Fire Monitoring and Detection System Using IoT-Based WSN Technology. Jurnal Penelitian Pendidikan IPA, 9(12), 11837–11845. https://doi.org/10.29303/jppipa.v9i12.5736
Tümer, E. H., & Erbil, H. Y. (2021). Extrusion-based 3d printing applications of pla composites: A review. In Coatings (Vol. 11, Issue 4). MDPI AG. https://doi.org/10.3390/coatings11040390
Wang, H., Qi, H., Sun, X., Jia, S., Li, X., Miao, T. J., Xiong, L., Wang, S., Zhang, X., Liu, X., Wang, A., Zhang, T., Huang, W., & Tang, J. (2023). High quantum efficiency of hydrogen production from methanol aqueous solution with PtCu–TiO2 photocatalysts. Nature Materials, 22(5), 619–626. https://doi.org/10.1038/s41563-023-01519-y
License
Copyright (c) 2025 Ikhsan Siregar, Joiverdia Arifiyanto, Rulianda Purnomo Wibowo, Mahatir Muhammad

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






