Characterization of Green-Synthesized Reduced Graphene Oxide using Aloe vera Extract and Its Application for Surface Water Treatment
DOI:
10.29303/jppipa.v11i11.12512Published:
2025-11-25Downloads
Abstract
Reduced graphene oxide (rGO) is a carbon-based material with high surface area and chemical stability, making it an effective adsorbent for water purification. This study investigates the green synthesis of rGO using Aloe vera extract as a natural reducing agent and its application in treating surface water from the Kapuas River, Indonesia. Graphene oxide was reduced with Aloe vera extract under varying time conditions, and the resulting rGO samples were characterized to confirm the reduction process. The structural and compositional analyses revealed that increasing reduction time enhanced oxygen removal and improved surface morphology. The application tests showed that rGO substantially improved water quality: color decreased from 225 to 95 PCU (57.8% reduction), turbidity dropped from 16.2 NTU to 1.2 NTU (92.4% removal), and dissolved iron concentration decreased from 0.65 ppm to 0.37 ppm (43.07% removal), with pH remaining stable near 6.5. Among all samples, rGO reduced for 120 minutes achieved the highest purification efficiency. These findings demonstrate the feasibility of Aloe vera-reduced rGO as a sustainable adsorbent for surface water purification.
Keywords:
Adsorption aloe vera extract Green synthesis Reduced graphene oxide Surface water treatmentReferences
Akbar, S. A. A., & Hasby, H. (2023). Synthesis of Reduced Graphene Oxide Using Reducing Lime Juice (Citrus aurantifolia) and Its Application as Malachite Green Adsorbent in Aquatic Environments. Jurnal Penelitian Pendidikan IPA, 9(4), 2229–2237. https://doi.org/10.29303/jppipa.v9i4.3598
Albatrni, H., Qiblawey, H., & El-Naas, M. H. (2021). Comparative Study between Adsorption and Membrane Technologies for the Removal of Mercury. Separation and Purification Technology, 257(April 2020), 117833. https://doi.org/10.1016/j.seppur.2020.117833
Andrio, D., Saputra, M. R., & Darmayanti, L. (2024). Utilization of Magnetic Biochar from Palm Shell as An Adsorbent for Removal of COD, Total Suspended Solid, Oil and Grease in Greywater. Jurnal Penelitian Pendidikan IPA, 10(3), 1195–1204. https://doi.org/10.29303/jppipa.v10i3.4597
Bhattacharya, G., Sas, S., Wadhwa, S., Mathur, A., McLaughlin, J., & Roy, S. S. (2017). Aloe vera Assisted Facile Green Synthesis of Reduced Graphene Oxide for Electrochemical and Dye Removal Applications. RSC Advances, 7(43), 26680–26688. https://doi.org/10.1039/c7ra02828h
Chen, L., Ji, T., Mu, L., Shi, Y., Brisbin, L., Guo, Z., Khan, M. A., Young, D. P., & Zhu, J. (2016). Facile Synthesis of Mesoporous Carbon Nanocomposites from Natural Biomass for Efficient Dye Adsorption and Selective Heavy Metal Removal. RSC Advances, 6(3), 2259–2269. https://doi.org/10.1039/c5ra19616g
Das, P., Ibrahim, S., Chakraborty, K., Ghosh, S., & Pal, T. (2024). Stepwise Reduction of Graphene Oxide and Studies on Defect-Controlled Physical Properties. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-023-51040-0
Doloksaribu, M., Sirait, M., Halawa, E., & Harahap, M. H. (2025). Supercapacitors from Reduced Graphene Oxide Material. Jurnal Penelitian Pendidikan IPA, 11(4), 202–208. https://doi.org/10.29303/jppipa.v11i4.11027
Fauzi, F., & Dwandaru, W. S. B. (2021). Analisis Karakteristik Graphene Oxide dan Reduksinya Melalui Gelombang Mikro. Jurnal Fisika, 11(1), 9–18. https://doi.org/10.15294/jf.v11i1.28136
Gupta, K., & Khatri, O. P. (2017). Reduced Graphene Oxide as an Effective Adsorbent for Removal of Malachite Green Dye: Plausible Adsorption Pathways. Journal of Colloid and Interface Science, 501, 11–21. https://doi.org/10.1016/j.jcis.2017.04.035
Harmawanda, S., Wahyuni, D., & Nurhanisa, M. (2023). Efektivitas Karbon Aktif dari Limbah Tongkol Jagung dengan Variasi Aktivator Asam Klorida dalam Penyerapan Logam Besi pada Air Gambut. Jurnal Fisika, 13(1), 10–19. https://doi.org/10.15294/jf.v13i1.42778
Hidayah, N. M. S., Liu, W. W., Lai, C. W., Noriman, N. Z., Khe, C. S., Hashim, U., & Lee, H. C. (2017). Comparison on Graphite, Graphene Oxide and Reduced Graphene Oxide: Synthesis and Characterization. AIP Conference Proceedings, 1892(November 2020). https://doi.org/10.1063/1.5005764
Hidayat, A., Setiadji, S., & Hadisantoso, E. P. (2019). Sintesis Oksida Grafena Tereduksi (rGO) dari Arang Tempurung Kelapa (Cocos nucifera). Al-Kimiya, 5(2), 68–73. https://doi.org/10.15575/ak.v5i2.3810
Hikmah, U., Azizah, A. T. W., & Hastuti, E. (2024). Crystal Structure Parameter Analysis of Reduced Graphene Oxide (rGO) from Coconut Shell Charcoal. Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat, 21(2), 157. https://doi.org/10.20527/flux.v21i2.17135
Jiao, X., Qiu, Y., Zhang, L., & Zhang, X. (2017). Comparison of the Characteristic Properties of Reduced Graphene Oxides Synthesized from Natural Graphites with Different Graphitization Degrees. RSC Advances, 7(82), 52337–52344. https://doi.org/10.1039/c7ra10809e
Kalsum, L., Hasan, A., Hasan, J., & Sari, S. R. (2024). The Effect of Chicken Bones Powder Adsorbent Mass and its Contact Time on Reducing Color Concentration in Peat Water Treatment. Jurnal Penelitian Pendidikan IPA, 10(9), 7179–7185. https://doi.org/10.29303/jppipa.v10i9.4848
Kristanti, D. A., Marzuqi, M. H., Putriana, I., Suprihatin, S., & Fauziyah, N. A. (2024). Sintesis Reduced Graphene Oxide dari Limbah Biomassa Serabut Kelapa Sawit dengan Metode Microwave. Jurnal Fisika Unand, 13(3), 392–398. https://doi.org/10.25077/jfu.13.3.392-398.2024
Kusrini, E., Suhrowati, A., Usman, A., Khalil, M., & Degirmenci, V. (2019). Synthesis and Characterization of Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide from Graphite Waste Using Modified Hummers’ Method and Zinc as Reducing Agent. International Journal of Technology, 10(6), 1093–1104. https://doi.org/10.14716/ijtech.v10i6.3639
Lee, K., Yoo, Y. K., Chae, M. S., Hwang, K. S., Lee, J., Kim, H., Hur, D., & Lee, J. H. (2019). Highly Selective Reduced Graphene Oxide (rGO) Sensor Based on a Peptide Aptamer Receptor for Detecting Explosives. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-45936-z
Lesiak, B., Trykowski, G., Tóth, J., Biniak, S., Kövér, L., Rangam, N., Stobinski, L., & Malolepszy, A. (2021). Chemical and Structural Properties of Reduced Graphene Oxide—Dependence on the Reducing Agent. Journal of Materials Science, 56(5), 3738–3754. https://doi.org/10.1007/s10853-020-05461-1
Natasha, N., Khan, A., Rahman, U. U., Sadaf, N., Yaseen, M., Abumousa, R. A., Khattak, R., Rehman, N., Bououdina, M., & Humayun, M. (2024). Effective Removal of Nile Blue Dye from Wastewater using Silver-Decorated Reduced Graphene Oxide. ACS Omega, 9(17), 19461–19480. https://doi.org/10.1021/acsomega.4c00973
Parthipan, P., Al-Dosary, M. A., Al-Ghamdi, A. A., & Subramania, A. (2021). Eco-Friendly Synthesis of Reduced Graphene Oxide as Sustainable Photocatalyst for Removal of Hazardous Organic Dyes. Journal of King Saud University - Science, 33(4), 101438. https://doi.org/10.1016/j.jksus.2021.101438
Pei, S., & Cheng, H. M. (2012). The Reduction of Graphene Oxide. Carbon, 50(9), 3210–3228. https://doi.org/10.1016/j.carbon.2011.11.010
Putri, N. A., Hikmah, U., & Prasetyo, A. (2023). Green Sintesis Oksida Grafena Tereduksi dari Arang Tempurung Kelapa dan Kayu dengan Menggunakan Reduktor Ramah Lingkungan Asam L-Askorbat. Jurnal Kimia, 17(01), 82. https://doi.org/10.24843/jchem.2023.v17.i01.p12
Putri, N. A., & Supardi, Z. A. I. (2023). Sintesis dan Karakterisasi Graphene Oxide (GO) dari Bahan Alam Tempurung Kelapa. Inovasi Fisika Indonesia, 12(2), 47–55. https://doi.org/10.26740/ifi.v12n2.p47-55
Ramanathan, S., Elanthamilan, E., Obadiah, A., Durairaj, A., Merlin, J. P., Ramasundaram, S., & Vasanthkumar, S. (2017). Aloe vera (L.) Burm.f. Extract Reduced Graphene Oxide for Supercapacitor Application. Journal of Materials Science: Materials in Electronics, 28(22), 16648–16657. https://doi.org/10.1007/s10854-017-7576-0
Razaq, A., Bibi, F., Zheng, X., Papadakis, R., Jafri, S. H. M., & Li, H. (2022). Review on Graphene-, Graphene Oxide-, Reduced Graphene Oxide-Based Flexible Composites: From Fabrication to Applications. Materials, 15(3). https://doi.org/10.3390/ma15031012
Roy, K., Ashikur, M., Noyon, R., & Uddin, M. E. (2023). Effective Removal of Turbidity from Tannery Wastewater by Graphene Based Nanocomposite as an Adsorption. Proceedings of the Waste Safe 2023. Retrieved from https://www.researchgate.net/publication/376269333
Saini, R., Mishra, R. K., & Kumar, P. (2024). Green Synthesis of Reduced Graphene Oxide Using the Tinospora cordifolia Plant Extract: Exploring Its Potential for Methylene Blue Dye Degradation and Antibacterial Activity. ACS Omega, 9(18), 20304–20321. https://doi.org/10.1021/acsomega.4c00748
Saron, M., Wahyuni, D., & Arman, Y. (2025). Reduksi Termal Oksida Grafena Berbasis Tandan Kosong Kelapa Sawit: Sintesis dan Aplikasinya sebagai Adsorben Metilen Biru. POSITRON, 15(1), 59–69. https://doi.org/10.26418/positron.v15i1.92203
Shalaby, A., Shalaby, A., Markov, P., & Staneva, A. (2015). Structural Analysis of Reduced Graphene Oxide by Transmission Electron Microscopy. Bulgarian Chemical Communications, 47(1), 291–295. Retrieved from https://www.researchgate.net/publication/274383728
Soffian, M. S., Halim, F. Z. A., Aziz, F., Rahman, M. A., Amin, M. A. M., & Chee, D. N. A. (2022). Carbon-Based Material Derived from Biomass Waste for Wastewater Treatment. Environmental Advances, 9(June), 100259. https://doi.org/10.1016/j.envadv.2022.100259
Sumila, S., Asri, A., Arsyad, Y. M., & Wahyuni, D. (2023). Uji Kinerja Karbon Aktif Tandan Kosong Kelapa Sawit (TKKS) sebagai Reusable Adsorbent Logam Besi pada Air Gambut. Jurnal Fisika: Fisika Sains dan Aplikasinya, 8(2), 17–22. https://doi.org/10.35508/fisa.v8i2.12894
Tewatia, K., Sharma, A., Sharma, M., & Kumar, A. (2020). Synthesis of Graphene Oxide and Its Reduction by Green Reducing Agent. Materials Today: Proceedings, 44, 3933–3938. https://doi.org/10.1016/j.matpr.2020.09.294
Tuan, P. V., Ha, T. T., Hung, N. D., Tan, V. T., Hoa, T. T. W., Ha, D. T., Ha, L. T., & Khiem, T. N. (2024). Reduction of Graphene Oxide (GO) to Reduced Graphene Oxide (rGO) at Different Hydrothermal Temperatures and Enhanced Photodegradation of Zinc Oxide/rGO Composites. Physica Scripta, 99(1), 015912. https://doi.org/10.1088/1402-4896/ad1088
Utkan, G., Yumusak, G., Tunali, B. C., Ozturk, T., & Turk, M. (2023). Production of Reduced Graphene Oxide by Using Three Different Microorganisms and Investigation of Their Cell Interactions. ACS Omega, 8(34), 31188–31200. https://doi.org/10.1021/acsomega.3c03213
Wahyuni, D., Nurhanisa, M., Bahtiar, A., & Rutdiyanti, R. (2022). Optimasi Sintesis Karbon Aktif dari Bambu Buluh (Schizostachyum brachycladum) dengan Variasi Suhu Karbonisasi untuk Penyerapan Besi pada Air Sumur Gambut. Jurnal Fisika Unand, 11(3), 292–298. https://doi.org/10.25077/jfu.11.3.292-298.2022
Wahyuni, D., Nurhasanah, N., Arsyad, Y. M., & Mariani, M. (2025). Removal of Mercury and Iron in Water Using Reduced Graphene Oxide/Zinc Oxide Composite. Journal of Physics: Conference Series, 2945(1). https://doi.org/10.1088/1742-6596/2945/1/012031
Yang, J., Shojaei, S., & Shojaei, S. (2022). Removal of Drug and Dye from Aqueous Solutions by Graphene Oxide: Adsorption Studies and Chemometrics Methods. NPJ Clean Water, 5(1). https://doi.org/10.1038/s41545-022-00148-3
Yang, L., Zhang, L., & Jiao, X. (2021). The Electrochemical Performance of Reduced Graphene Oxide Prepared from Different Types of Natural Graphites. RSC Advances, 11, 4042–4052. https://doi.org/10.1039/d0ra09684a
Yang, X., Liu, P., & Yu, H. (2025). Adsorption of Heavy Metals from Wastewater Using Reduced Graphene Oxide@titanate Hybrids in Batch and Fixed Bed Systems. BMC Chemistry, 19(1). https://doi.org/10.1186/s13065-025-01443-z
Yanti, K. D., Fitrianingsih, Y., & Sazati, O. (2022). Analisis Kualitas Air dan Daya Tampung Beban Pencemar Sungai Kapuas di Kecamatan Mukok Kabupaten Sanggau. Teknologi Lingkungan Basah, 10(1), 22–31. https://doi.org/10.26418/jtllb.v10i1.48610
Zhang, Q., Gao, Y., Xu, Z., Wang, S., Kobayashi, H., & Wang, J. (2020). The Effects of Oxygen Functional Groups on Graphene Oxide on the Efficient Adsorption of Radioactive Iodine. Materials MDPI, 5770(13), 1–13. https://doi.org/10.3390/ma13245770
License
Copyright (c) 2025 Dwiria Wahyuni, Mega Nurhanisa, Ya’ Muhammad Arsyad, Mia Audina

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






