Development of Biotin and Horseradish Peroxidase Labelling against Monoclonal Antibody Amyloid-β42 and Its Application on Enzyme-Linked Immunosorbent Assay
DOI:
10.29303/jppipa.v11i10.12528Published:
2025-10-25Downloads
Abstract
Alzheimer disease is one of the causes of dementia that could make the patient lose their memories until they unable to do normal activities. It is caused by accumulation of protein in the brain called Amyloid-β42 (Aβ42), that often used as biomarker for alzheimer by enzyme-linked immunosorbent assay (ELISA). To increase the sensitivity and accuracy, capture antibodies are conjugated with labels such as Horseradish Peroxidase (HRP) and Biotin. However, the two conjugates also differ in sensitivity and specificity, therefore this research is to find which is more optimum and stable for ELISA usage. The molecular mass of the conjugated antibodies was characterized with SDS-PAGE, result shows the pre-conjugated antibody has 150 kDa bands, conjugated antibody with labels is heavier than the pre-conjugated due to the addition of each label. Conjugated antibody tested with tetramethylbenzidine (TMB), then analyzed by ELISA reader. The measurement precision decided with %CV value with results shows dillution from 10-1 to 10-4 has %CV less than 10%, while Biotin is from 10-1 to 10-5. Optimization done by determining fixed antigen with the conjugated antibody, the optimal concentration for HRP is 10-3 while biotin is at 10-4. Stability of the conjugated antibody was also determined, HRP measurement started to unstable around second month and third month, while biotin start to unstable around fourth month, this shows the biotin is more stable than the HRP.
Keywords:
Alzheimer Aβ42 Conjugated Antibodies HRP Biotin ELISAReferences
Agrawal, U., Agrawal, V., Agrawal, S., Patond, S., & Agrawal, S. (2022). Effectiveness of in-house developed Sandwich ELISA for antigen detection of tubercular antigen in resource constraint setting. Asian Journal of Medical Sciences, 13(5), 140–144. https://doi.org/10.3126/ajms.v13i5.42966
Balzer, A. H. A., & Whitehurst, C. B. (2023). An Analysis of the Biotin–(Strept)avidin System in Immunoassays: Interference and Mitigation Strategies. Current Issues in Molecular Biology, 45(11), 8733–8754. https://doi.org/10.3390/cimb45110549
Billingsley, M. M., Riley, R. S., & Day, E. S. (2017). Antibody-nanoparticle conjugates to enhance the sensitivity of ELISA-based detection methods. PLOS ONE, 12(5), e0177592. https://doi.org/10.1371/journal.pone.0177592
Bruggink, K. A., Jongbloed, W., Biemans, E. A. L. M., Veerhuis, R., Claassen, J. A. H. R., Kuiperij, H. B., & Verbeek, M. M. (2013). Amyloid-β oligomer detection by ELISA in cerebrospinal fluid and brain tissue. Analytical Biochemistry, 433(2), 112–120. https://doi.org/10.1016/j.ab.2012.09.014
Chen, X., Muthoosamy, K., Pfisterer, A., Neumann, B., & Weil, T. (2012). Site-Selective Lysine Modification of Native Proteins and Peptides via Kinetically Controlled Labeling. Bioconjugate Chemistry, 23(3), 500–508. https://doi.org/10.1021/bc200556n
Delgadillo, R. F., Mueser, T. C., Zaleta-Rivera, K., Carnes, K. A., González-Valdez, J., & Parkhurst, L. J. (2019). Detailed characterization of the solution kinetics and thermodynamics of biotin, biocytin and HABA binding to avidin and streptavidin. PLOS ONE, 14(2), e0204194. https://doi.org/10.1371/journal.pone.0204194
Desriani, D., Azamris, A., Rustamadji, P., Abna, I. M., Ibadurrahman, I., Fuad, A. M., Nurdiani, D., Yuliawati, Y., Utami, N., Herawati, N., Fitria, N., & Warisman, M. A. (2024). Sensitive detection of PIK3CA exon 20 H1047R breast cancer based on low-cost intercalary dye SYBR Green I real-time qPCR assay. Sains Malaysiana, 53(11), 3683–3693. https://doi.org/10.17576/jsm-2024-6311-12
Dočkal, J., Svoboda, M., Lísal, M., & Moučka, F. (2019). A general hydrogen bonding definition based on three-dimensional spatial distribution functions and its extension to quantitative structural analysis of solutions and general intermolecular bonds. Journal of Molecular Liquids, 281, 225–235. https://doi.org/10.1016/j.molliq.2019.02.036
Erbach, J., Bonn, F., Diesner, M., Arnold, A., Stein, J., Schröder, O., & Aksan, A. (2022). Relevance of Biotin Deficiency in Patients with Inflammatory Bowel Disease and Utility of Serum 3 Hydroxyisovaleryl Carnitine as a Practical Everyday Marker. Journal of Clinical Medicine, 11(4), 1118. https://doi.org/10.3390/jcm11041118
Feinberg, G., & Sucher, J. (1970). General Theory of the van der Waals Interaction: A Model-Independent Approach. Physical Review A, 2(6), 2395–2415. https://doi.org/10.1103/PhysRevA.2.2395
Gao, T., Liu, X., Chen, S., Li, C., Mu, B., Wang, J., Li, H., Piao, C., Jin, Q., & Li, G. (2025). Identification of Novel Umami Peptides from Low-Salt Dry-Cured Ham Skin and Revelation of the Umami Mechanism through Molecular Docking with T1R1/T1R3. Journal of Agricultural and Food Chemistry, 73(14), 8578–8588. https://doi.org/10.1021/acs.jafc.5c01567
Gosling, J. P. (2005). Immunoassays A Practical Approach. Oxford University Press.
Greifenstein, R., Röhrs, D., Ballweg, T., Pfeifer, J., Gottwald, E., Takamiya, M., Franzreb, M., & Wöll, C. (2024). Integrating Biocatalysts into Metal‐Organic Frameworks: Disentangling the Roles of Affinity, Molecular Weight, and Size. ChemBioChem, 25(21), 1–10. https://doi.org/10.1002/cbic.202400625
Hirsch, J. D., Eslamizar, L., Filanoski, B. J., Malekzadeh, N., Haugland, R. P., Beechem, J. M., & Haugland, R. P. (2002). Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation. Analytical Biochemistry, 308(2), 343–357. https://doi.org/10.1016/S0003-2697(02)00201-4
Hörner, S., Ghosh, M., Kauer, J., Spät, P., Rammensee, H., Jung, G., & Pflügler, M. (2021). Mass spectrometry for quality control of bispecific antibodies after SDS‐PAGE in‐gel digestion. Biotechnology and Bioengineering, 118(8), 3069–3075. https://doi.org/10.1002/bit.27817
Huang, W.-C., Huang, L.-J., Hsu, L.-S., Huang, S.-T., Lo, W.-T., Wang, T.-F., Sun, W.-T., Wei, W.-Y., Lee, Y.-S., Chuang, S.-H., Lee, C.-P., Chou, H.-H., & Chen, S.-H. (2021). Selective and predicable amine conjugation sites by kinetic characterization under excess reagents. Scientific Reports, 11(1), 21222. https://doi.org/10.1038/s41598-021-00743-3
Ida, N., Hartmann, T., Pantel, J., Schrüder, J., Zerfass, R., Fürstl, H., Sandbrink, R., Masters, C. L., & Beyreuther, K. (1996). Analysis of Heterogeneous βA4 Peptides in Human Cerebrospinal Fluid and Blood by a Newly Developed Sensitive Western Blot Assay. Journal of Biological Chemistry, 271(37), 22908–22914. https://doi.org/10.1074/jbc.271.37.22908
Indra, M. R., Arisetijono, E., & Hidayat, R. R. (2017). Beta Amyloid Polyclonal Antibody Immunogenicity As Early Development Study Of Early Diagnosis For Alzheimer’s Disease. MNJ (Malang Neurology Journal), 3(1), 1–4. https://doi.org/10.21776/ub.mnj.2017.003.01.1
Jain, A., Barve, A., Zhao, Z., Jin, W., & Cheng, K. (2017). Comparison of Avidin, Neutravidin, and Streptavidin as Nanocarriers for Efficient siRNA Delivery. Molecular Pharmaceutics, 14(5), 1517–1527. https://doi.org/10.1021/acs.molpharmaceut.6b00933
Khramtsov, P., Novokshonova, A., Galaeva, Z., Morozova, M., Bezukladnikova, T., & Rayev, M. (2025). A Systematic Investigation of TMB Substrate Composition for Signal Enhancement in ELISA. In ChemRxiv (Vol. 1, pp. 1–61). https://doi.org/10.26434/chemrxiv-2025-rjw27
Lai, X., Lv, X., Zhang, G., Xiong, Z., Lai, W., & Peng, J. (2020). Highly Specific Anti-tylosin Monoclonal Antibody and Its Application in the Quantum Dot Bead-Based Immunochromatographic Assay. Food Analytical Methods, 13(12), 2258–2268. https://doi.org/10.1007/s12161-020-01846-9
Lakshmipriya, T., Gopinath, S. C. B., Hashim, U., & Tang, T. H. (2016). Signal enhancement in ELISA: Biotin-streptavidin technology against gold nanoparticles. Journal of Taibah University Medical Sciences, 11(5), 432–438. https://doi.org/10.1016/j.jturned.2016.05.010
Leong, Y. Q., Ng, K. Y., Chye, S. M., Ling, A. P. K., & Koh, R. Y. (2020). Mechanisms of action of amyloid-beta and its precursor protein in neuronal cell death. Metabolic Brain Disease, 35(1), 11–30. https://doi.org/10.1007/s11011-019-00516-y
Martell, J. D., Yamagata, M., Deerinck, T. J., Phan, S., Kwa, C. G., Ellisman, M. H., Sanes, J. R., & Ting, A. Y. (2016). A split horseradish peroxidase for the detection of intercellular protein–protein interactions and sensitive visualization of synapses. Nature Biotechnology, 34(7), 774–780. https://doi.org/10.1038/nbt.3563
McConnell, D. B. (2021). Biotin’s Lessons in Drug Design. Journal of Medicinal Chemistry, 64(22), 16319–16327. https://doi.org/10.1021/acs.jmedchem.1c00975
Mehrotra, V., Sharma, A., Lahiri, V. L., Sharma, S., & Dube, S. (2015). Effect Of Different Storage Temperatures On Enzyme - Antibody Conjugate Used In Immunohistochemistry. Journal of Evolution of Medical and Dental Sciences, 4(20), 3398–3403. https://doi.org/10.14260/jemds/2015/491
Mufidah, T., Wibowo, H., & Subekti, D. T. (2015). Pengembangan Metode Elisa Dan Teknik Deteksi Cepat Dengan Imunostik Terhadap Antibodi Anti Aeromonas Hydrophila Pada Ikan Mas (Cyprinid carpio). Jurnal Riset Akuakultur, 10(4), 553–565. https://doi.org/10.15578/jra.10.4.2015.553-565
Niu, X., Liu, Q., Wang, P., Zhang, G., Jiang, L., Zhang, S., Zeng, J., Yu, Y., Wang, Y., & Li, Y. (2024). Establishment of an Indirect ELISA Method for the Detection of the Bovine Rotavirus VP6 Protein. Animals, 14(2), 271. https://doi.org/10.3390/ani14020271
Qin, Y., Sha, R., Feng, Y., & Huang, Y. (2020). Comparison of double antigen sandwich and indirect enzyme‐linked immunosorbent assay for the diagnosis of hepatitis C virus antibodies. Journal of Clinical Laboratory Analysis, 34(11), 1–6. https://doi.org/10.1002/jcla.23481
Rabiei, K., Petrella, J. R., Lenhart, S., Liu, C., Doraiswamy, P. M., & Hao, W. (2025). Data-driven modeling of amyloid-beta targeted antibodies for Alzheimer’s disease. https://doi.org/10.48550/arXiv.2503.08938
Sakamoto, S., Putalun, W., Vimolmangkang, S., Phoolcharoen, W., Shoyama, Y., Tanaka, H., & Morimoto, S. (2018). Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. Journal of Natural Medicines, 72(1), 32–42. https://doi.org/10.1007/s11418-017-1144-z
Strachan, E., Mallia, A. K., Cox, J. M., Antharavally, B., Desai, S., Sykaluk, L., O’Sullivan, V., & Bell, P. A. (2004). Solid‐phase biotinylation of antibodies. Journal of Molecular Recognition, 17(3), 268–276. https://doi.org/10.1002/jmr.669
Thomsson, O., Ström-Holst, B., Sjunnesson, Y., & Bergqvist, A.-S. (2014). Validation of an enzyme-linked immunosorbent assay developed for measuring cortisol concentration in human saliva and serum for its applicability to analyze cortisol in pig saliva. Acta Veterinaria Scandinavica, 56(1), 55. https://doi.org/10.1186/s13028-014-0055-1
Wilczyńska, K., & Waszkiewicz, N. (2020). Diagnostic Utility of Selected Serum Dementia Biomarkers: Amyloid β-40, Amyloid β-42, Tau Protein, and YKL-40: A Review. Journal of Clinical Medicine, 9(11), 3452. https://doi.org/10.3390/jcm9113452
Wong, R. C. W., Favaloro, E. J., Pollock, W., Wilson, R. J., Hendle, M. J., Adelstein, S., Baumgart, K., Homes, P., Smith, S., Steele, R. H., Sturgess, A., & Gillis, D. (2004). A multi-centre evaluation of the intra-assay and inter-assay variation of commercial and in-house anti-cardiolipin antibody assays. Pathology, 36(2), 182–192. https://doi.org/10.1080/00313020410001672037
Xu, J., Coughlin, J. E., Szyjka, M., Jabary, S., Saluja, S., Sosic, Z., Chen, Y., & Xu, C.-F. (2024). Evaluation of the impact of antibody fragments on aggregation of intact molecules via size exclusion chromatography coupled with native mass spectrometry. MAbs, 16(1), 1–12. https://doi.org/10.1080/19420862.2024.2334783
You, M., Yang, S., Zhang, F., & He, P. (2020). A novel electrochemical biosensor with molecularly imprinted polymers and aptamer-based sandwich assay for determining amyloid-β oligomer. Journal of Electroanalytical Chemistry, 862(114017), 1–8. https://doi.org/10.1016/j.jelechem.2022.11
Zhou, Y., Liu, L., Hao, Y., & Xu, M. (2016). Detection of Aβ Monomers and Oligomers: Early Diagnosis of Alzheimer’s Disease. Chemistry – An Asian Journal, 11(6), 805–817. https://doi.org/10.1002/asia.201501355
Zou, Z., Huang, Q., Li, X., Liu, X., Yin, L., Zhao, Y., Liang, G., & Wu, W. (2023). Dissolution changes in drug-amino acid/biotin co-amorphous systems: Decreased/increased dissolution during storage without recrystallization. European Journal of Pharmaceutical Sciences, 188, 106526. https://doi.org/10.1016/j.ejps.2023.106526
License
Copyright (c) 2025 Nur Rizky Fiero, Uus Saepuloh, Huda Shalahudin Darusman, Rachmitasari Noviana

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






