Application of GNSS Interferometric Reflectometry (GNSS-IR) for Monitoring Tidal Variations in Coastal Zones
DOI:
10.29303/jppipa.v11i9.12539Published:
2025-09-25Downloads
Abstract
GNSS-Interferometric Reflectometry (GNSS-IR) utilizes Signal-to-Noise Ratio (SNR) data from GNSS satellites to estimate sea level variations. This study applied GNSS-IR using GPS L1 SNR data from four CORS stations (CBEL, CLKI, CHAI, CLMP), paired with their nearest tide gauge stations (BLTG, LBKI, AMHI, LMPA) for validation. Data in RINEX 2.11 format at 30-second intervals were processed, considering antenna heights above the sea surface to extract reflection frequencies. Results indicate strong agreement at the LMPA (r = 0.94, RMSE = 0.17 m) and BLTG (r = 0.90, RMSE = 0.37 m) pairs, demonstrating the reliability of GNSS-IR under favorable conditions. The AMHI pair showed moderate correlation (r = 0.68, RMSE = 0.45 m), while the LBKI pair exhibited no meaningful correlation (r = –0.07), likely due to severe multipath disturbance and local site limitations. These findings suggest that GNSS-IR can provide cost-efficient and accurate sea level estimates, but performance is highly site-dependent and influenced by environmental and instrumental factors. The study highlights the potential of GNSS-IR to complement conventional tide gauges in Indonesia, while emphasizing the need for careful station selection and multi-frequency analysis in future applications.
Keywords:
GNSS GNSS-IR Harmonic analysis Signal to noise ratio (SNR) TidesReferences
Axelrad, P., Larson, K., & Jones, B. (2005). Use of the correct satellite repeat period to characterize and reduce site-specific multipath errors. Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation, ION GNSS 2005, 2005(January 2005), 2638–2648. https://epic.awi.de/id/eprint/35979/
Bolbakov, R. G., Sinitsyn, A. V., & Tsvetkov, V. Y. (2020). Methods of comparative analysis. Journal of Physics: Conference Series, 1679(5). https://doi.org/10.1088/1742-6596/1679/5/052047
Cahyadi, M. N., Bawasir, A., Susilo, & Arief, S. (2023). Analysis of Water Level Monitoring using GNSS Interferometric Reflectometry in River Waters. IOP Conference Series: Earth and Environmental Science, 1276(1), 0–12. https://doi.org/10.1088/1755-1315/1276/1/012020
Chai, H., Chen, K., & Lin, J. (2025). Transforming Coastal GNSS Stations Into Tsunami Gauges With Adaptive Window Interferometric Reflectometry. IEEE Transactions on Geoscience and Remote Sensing, 63, 1–10. https://doi.org/10.1109/TGRS.2025.3550744
Chamoli, V., Prakash, R., & Vidyarthi, A. (2024). First Pioneering Soil Moisture Estimation Software Leveraging Navigation Signals from India’s NavIC Satellite. 2024 IEEE Space, Aerospace and Defence Conference (SPACE), 808–811. https://doi.org/10.1109/SPACE63117.2024.10667839
Chen, Z., & Jin, S. (2024). High-frequency Water Level Estimation in the Yangtze River from GNSS-Interferometric Reflectometry. 2024 Photonics & Electromagnetics Research Symposium (PIERS), 1–5. https://doi.org/10.1109/PIERS62282.2024.10618080
Ding, Q., Liang, Y., Liang, X., Ren, C., Yan, H., Liu, Y., Zhang, Y., Lu, X., Lai, J., & Hu, X. (2023). Soil Moisture Retrieval Using GNSS-IR Based on Empirical Modal Decomposition and Cross-Correlation Satellite Selection. Remote Sensing, 15(13). https://doi.org/10.3390/rs15133218
Georgiadou, Y., & Kleusberg, A. (1988). On carrier signal multipath effects in relative GPS positioning. Map Collector, 13(3), 172–179. https://doi.org/10.1007/BF03655245
Ghiasi, Y., Farzaneh, S., Parvazi, K., & Duguay, C. R. (2021). Amplitue Estimation of Dominant Tidal Constituents Using Gnss Interferometric Reflectometry Technique. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 8546–8549. https://doi.org/10.1109/IGARSS47720.2021.9554876
Ha, J., Kambe, M., & Pe, J. (2012). Data Mining. In Data Mining: Concepts and Techniques. Elsevier. https://doi.org/10.1016/C2009-0-61819-5
Handoko, E. Y., Richasari, D. S., & Pratomo, D. G. (2021). Seasonal and Interannual of Sea Level Variability in the Indonesian Seas using Satellite Altimetry. IOP Conference Series: Earth and Environmental Science, 731(1). https://doi.org/10.1088/1755-1315/731/1/012004
Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2007). GNSS – Global Navigation Satellite Systems GPS, GLONASS, Galileo, and more. Vienna: Springer Vienna.
Hsiao, S. C., Fu, H. S., Wu, H. L., Liang, T. Y., Chang, C. H., Chen, Y. M., Lin, L. Y., & Chen, W. B. (2024). Impact assessment of sea level rise-induced high tide flooding and socioeconomic losses in a highly vulnerable coastal region. Journal of Hydrology: Regional Studies, 55(August), 101921. https://doi.org/10.1016/j.ejrh.2024.101921
Khomsin, Mutiara Anjasmara, I., Guruh Pratomo, D., & Ristanto, W. (2019). Accuracy Analysis of GNSS (GPS, GLONASS and BEIDOU) Obsevation for Positioning. E3S Web of Conferences, 94, 0–6. https://doi.org/10.1051/e3sconf/20199401019
Khomsin, Pratomo, D. G., & Rohmawati, C. N. (2021). Analysis of accuracy comparison tidal global (FES2014, TPXO9) and regional (BIG Prediction) models to the existing tides in Surabaya and surrounding waters. IOP Conference Series: Earth and Environmental Science, 936(1). https://doi.org/10.1088/1755-1315/936/1/012028
Khomsin, Pratomo, D. G., Syariz, M. A., Hariyanto, I. H., & Harisa, H. C. (2024). Dense Neural Network for Classification of Seafloor Sediment using Backscatter Mosaic Feature. BIO Web of Conferences, 89. https://doi.org/10.1051/bioconf/20248907004
Kim, S.-K., Park, J., Wengrove, M. E., & Dickey, J. E. (2021). Feasibility Study of GNSS Interferometric Reflectometry (GNSS-IR) For Retrieving Significant Wave Height. 2021 IEEE Specialist Meeting on Reflectometry Using GNSS and Other Signals of Opportunity (GNSS+R), 69–72. https://doi.org/10.1109/GNSSR53802.2021.9617691
Larson, K. M. (2024). Gnssrefl: an open source software package in python for GNSS interferometric reflectometry applications. GPS Solutions, 28(4), 1–7. https://doi.org/10.1007/s10291-024-01694-8
Larson, K. M., Löfgren, J. S., & Haas, R. (2013). Coastal sea level measurements using a single geodetic GPS receiver. Advances in Space Research, 51(8), 1301–1310. https://doi.org/10.1016/j.asr.2012.04.017
Larson, K. M., & Williams, S. D. P. (2023). Water level measurements using reflected GNSS signals. The International Hydrographic Review, 29(2), 66–76. https://doi.org/10.58440/ihr-29-2-a30
Lei, J., Li, W., & Zhang, S. (2023). Improving Consistency of GNSS-IR Reflector Height Estimates between Different Frequencies Using Multichannel Singular Spectrum Analysis. Remote Sensing, 15(7). https://doi.org/10.3390/rs15071779
Li, Y., Yu, K., Jin, T., Chang, X., Wang, Q., & Li, J. (2021). Development of a GNSS-IR instrument based on low-cost positioning chips and its performance evaluation for estimating the reflector height. GPS Solutions, 25(4), 127. https://doi.org/10.1007/s10291-021-01163-6
Lombardi, M. A., Nelson, L. M., Novick, A. N., & Zhang, V. S. (2001). Time and Frequency Measurements Using the Global Positioning System. The International Journal of Metrology, 8(3), 26–33. Retrieved from http://tf.nist.gov/general/pdf/1424.pdf
Ma, P., Huang, C., Hou, J., Zhang, Y., Han, W., & Dou, P. (2023). Snow Depth Retrieval With Multiazimuth and Multisatellite Data Fusion of GNSS-IR Considering the Influence of Surface Fluctuation. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–14. https://doi.org/10.1109/TGRS.2023.3323642
Mahmoodi, K., & Ghassemi, H. (2018). Outlier detection in ocean wave measurements by using unsupervised data mining methods. Polish Maritime Research, 25(1), 44–50. https://doi.org/10.2478/pomr-2018-0005
Orihan, M., Borisov, M., Marinković, G., & Petrović, M. V. (2019). the Influence of Ocean Tides To Determine the Earth’S Orientation Parameters. Archives for Technical Sciences, 2(21), 43–53. https://doi.org/10.7251/afts.2019.1121.043o
Padrón, N., & Vorobyov, S. (2025). A GNSS-IR Aided Multispectral Satellite Data Fusion for Meter-Level Wide-Area Volumetric Soil Moisture Estimation. ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5. https://doi.org/10.1109/ICASSP49660.2025.10890009
Pan, H., Xu, T., & Wei, Z. (2023). A modified tidal harmonic analysis model for short-term water level observations. Ocean Modelling, 186, 102251. https://doi.org/10.1016/j.ocemod.2023.102251
Peng, D., Lin, Y. N., Lee, J.-C., Su, H.-H., & Hill, E. M. (2024). Multi-constellation GNSS interferometric reflectometry for tidal analysis: mitigations for K1 and K2 biases due to GPS geometrical errors. Journal of Geodesy, 98(1), 5. https://doi.org/10.1007/s00190-023-01812-3
Pestana, A. (2016). Technical Report : Reading RINEX 2 . 11 Observation Data Files António Pestana. Observation Data Files. https://doi.org/10.13140/RG.2.1.4888.4087
Pratomo, D. G., Khomsin, K., & Syaputra, K. (2019). Comparison of Sea Surface Variation Derived from Global Navigation Satellite System (GNSS) and Co-Tidal in Java Sea. E3S Web of Conferences, 94, 8–13. https://doi.org/10.1051/e3sconf/20199401007
Rajabi, M., Hoseini, M., Nahavandchi, H., Semmling, M., Ramatschi, M., Goli, M., Haas, R., & Wickert, J. (2022). Polarimetric GNSS-R Sea Level Monitoring Using I/Q Interference Patterns at Different Antenna Configurations and Carrier Frequencies. IEEE Transactions on Geoscience and Remote Sensing, 60(May). https://doi.org/10.1109/TGRS.2021.3123146
Roesler, C., & Larson, K. M. (2018). Software tools for GNSS interferometric reflectometry (GNSS-IR). GPS Solutions, 22(3), 80. https://doi.org/10.1007/s10291-018-0744-8
Roussel, N., Ramillien, G., Frappart, F., Darrozes, J., Gay, A., Biancale, R., Striebig, N., Hanquiez, V., Bertin, X., & Allain, D. (2015). Sea level monitoring and sea state estimate using a single geodetic receiver. Remote Sensing of Environment, 171, 261–277. https://doi.org/10.1016/j.rse.2015.10.011
Shekhar, S., Prakash, R., Pandey, D. K., & Vidyarthi, A. (2024). Vegetation-Specific Correction for Improved Soil Moisture Estimation Through Multipath Phase Analysis Using NavIC-IR. IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, 3089–3092. https://doi.org/10.1109/IGARSS53475.2024.10642110
Soulat, F., Caparrini, M., Germain, O., Lopez-Dekker, P., Taani, M., & Ruffini, G. (2004). Sea state monitoring using coastal GNSS-R. Geophysical Research Letters, 31(21). https://doi.org/10.1029/2004GL020680
Wang, F., Yang, D., Li, J., Xing, J., & Zhang, G. (2024). Statistical Analysis of Reflected GNSS Signal Off Sea Surfaces From a Coastal Scenario. IEEE Transactions on Geoscience and Remote Sensing, 62, 1–15. https://doi.org/10.1109/TGRS.2024.3500014
Wang, H., Wei, N., Li, M., Han, S. C., Fang, R., & Zhao, Q. (2023). Estimation of GPS-observed ocean tide loading displacements with an improved harmonic analysis in the northwest European shelf. Journal of Geodesy, 97(12), 0–21. https://doi.org/10.1007/s00190-023-01796-0
Wang, X., Niu, Z., Chen, S., & He, X. (2022). A correction method of height variation error based on one SNR arc applied in GNSS–IR sea-level retrieval. Remote Sensing, 14(1). https://doi.org/10.3390/rs14010011
Wei, Z., Ren, C., Liang, X., Liang, Y., Yin, A., Liang, J., & Yue, W. (2023). Sea-Level Estimation from GNSS-IR under Loose Constraints Based on Local Mean Decomposition. Sensors, 23(14). https://doi.org/10.3390/s23146540
Wei, Z., Ren, C., Liang, Y., Liu, Y., Liang, J., Yin, A., Yue, W., Zhang, X., & Lin, X. (2024). Can the phase of SNR oscillations in GNSS-IR be used to estimate sea-level height? GPS Solutions, 28(3), 1–17. https://doi.org/10.1007/s10291-024-01663-1
Williams, S. D. P., Bell, P. S., McCann, D. L., Cooke, R., & Sams, C. (2020). Demonstrating the Potential of Low-Cost GPS Units for the Remote Measurement of Tides and Water Levels Using Interferometric Reflectometry. Journal of Atmospheric and Oceanic Technology, 37(10), 1925–1935. https://doi.org/10.1175/JTECH-D-20-0063.1
Yalçin, G. (2023). Modeling of Sea Level Changes With GNSS-IR Method and Comparative Analysis With Tide Gauge Data. Advances in Geomatics, 1(1), 32–47. https://doi.org/10.5281/zenodo.10202317
Yang, T., Wang, J., & Sun, Z. (2024). Can the Soil Salinity be Retrieved Using GNSS Interferometric Reflectometry Data? IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17, 10612–10620. https://doi.org/10.1109/JSTARS.2024.3391321
Yuan, X., Hu, Y., Liu, W., & Wickert, J. (2024). GNSS-IR Snow Depth Retrieval Based on the PSO-NFP Method With Multi-GNSS Constellations. IEEE Transactions on Geoscience and Remote Sensing, 62, 1–10. https://doi.org/10.1109/TGRS.2024.3492495
Zhu, H., Gui, Y., Shen, Y., Wang, Q., & Zheng, W. (2024). Improving Water Level Retrieval Accuracy of GNSS-IR Based on Ionospheric Refraction Correction Optimization Method. IEEE Geoscience and Remote Sensing Letters, 21, 1–5. https://doi.org/10.1109/LGRS.2024.3451697
License
Copyright (c) 2025 Hairul Zulkifli, Danar Guruh Pratomo, Khomsin

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






