Exploration and Analysis of Ni Hyperaccumulator Plants in Ecosystem of Nickel Reach Forest in Southeast Sulawesi, Indonesia
DOI:
10.29303/jppipa.v11i11.12585Published:
2025-11-25Downloads
Abstract
Indonesia, as the world's largest nickel producer, has vast ultramafic areas that have the potential to become habitats for nickel hyperaccumulator plants (Ni). This study aimed to explore and analyze nickel hyperaccumulator plants in the mining area of CV. Unaaha Bakti Persada, North Konawe Regency, Southeast Sulawesi, Indonesia. The research was conducted from June to November 2023 using the exploration method at three observation stations, each consisting of three plots. The research stages carried out include exploration, plant collection and identification, and analysis of Ni content in soil as well as plant tissue using Atomic Absorption Spectrophotometry (AAS). A total of 32 plant species were found, which was dominated by Pteridium aquilinum ferns at Stations I and III and Scleria lithosperma grasses at Station II. The Ni content of the soil was very high (5,458.32–5,938.41 mg/kg) and far above the normal threshold. Several species showed high Ni accumulation capacity, with the most of six were Sarcotheca celebica, Knema metanensis, Pluchea carolinensis, Gymnostoma sumatrana, and Justicia gendarussa. The post mining sites were categorized as marginal due to heavy metal toxicity (Ni, Co, Cr), and therefore, only tolerant plants can survive. Sarcotheca celebica had the highest BCF value (0.1421) and was classified as a moderate accumulator. All the six species has the potential to be used for phytoremediation, phytomining and reclamation of post mining areas in Southeast Sulawesi.
Keywords:
Hyperaccumulator plants, Nickel (Ni), Phytoremediation, Phytomining, Revegetation, Ultramafic areaReferences
Amir, H., Cavaloc, Y., Crossay, T., Bourles, A., Gensous, S., Lagrange, A., Burtet-Sarramegna, V., & Guentas, L. (2023). Importance and roles of arbuscular mycorrhizal fungi in New Caledonian ultramafic soils. Botany Letters, 170(3), 449–458. https://doi.org/10.1080/23818107.2022.2160808
Aribal, L. G., Marin, R. A., Paquit, J. C., & Zanoria, J. A. (2017). Abundance and Distribution of Arbuscular Mycorrhiza in the Ultramafic Soils of Mt. Kiamo in Bukidnon, Philippines. International Journal of Scientific Research in Environmental Sciences, 5, 36–41. https://doi.org/10.12983/ijres-2017-p0036-0041
Astuti, I. P., Sari, R., Susandarini, R., & Zuhro, F. (2018). Sarcotheca celebica Veldkamp: Persebarannya di Sulawesi, Status Konservasi dan Kelangkaan. Jurnal Biologi Indonesia, 14(1), 143–146. https://doi.org/10.47349/jbi/14012018/143
Baker, A. J. M., & Brooks, R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery, 1(2), 81-126. https://doi.org/10.1080/01904168109362867.
Brearley, F. Q. (2024). Metal hyperaccumulation in the Indonesian flora. Ecological Research, 39(6), 957-965. https://doi.org/10.1111/1440-1703.12497
Disinger, H. P., Navarrete Gutiérrez, D. M., Díaz Reyes, A. M., Rodas Duarte, R., Quezada, M. L., van der Ent, A., Baker, A. J. M., Echevarria, G., & Pollard, A. J. (2024). Herbarium and field studies of nickel hyperaccumulator plants from ultramafic soils in Guatemala. Ecological Research, 39(6), 838–851. https://doi.org/10.1111/1440-1703.12495
Earth.org. (2023). The Environmental Problems Caused by Mining. Retrieved from https://earth.org/environmental-problems-caused-by-mining/ Accessed on 20th December 2023
Galey, M. L., van der Ent, A., Iqbal, M. C. M., & Rajakaruna, N. (2017). Ultramafic geoecology of South and Southeast Asia. Botanical Studies, 58(1). https://doi.org/10.1186/s40529-017-0167-9
Garnica-Díaz, C., Berazaín Iturralde, R., Cabrera, B., Calderón-Morales, E., Felipe, F. L., García, R., Hechavarría, J. L. G., Guimarães, A. F., Medina, E., Paul, A. L. D., Rajakaruna, N., Restrepo, C., Siebert, S. J., van den Berg, E., van der Ent, A., Velasquez, G., & M. Hulshof, C. M. (2023). Global plant ecology of tropical ultramafic ecosystems. Botanical Review, 89(2), 115–157. https://doi.org/10.1007/s12229-022-09278-2
Gavrilescu, M. (2022). Enhancing phytoremediation of soils polluted with heavy metals. Current Opinion in Biotechnology, 74, 21–31. https://doi.org/10.1016/j.copbio.2021.10.024
Hamim, & Miftahudin. (2023). Tumbuhan Toleran Logam Berat: Potensinya Untuk Fitoremediasi dan Fitomining. Bogor: IPB Press.
Haruna, N., Wardiyati, T., Maghfoer, M. D., & Handayanto, E. (2018). Fitoremediasi lahan yang mengalami cekaman logam berat nikel dengan menggunakan tumbuhan endemik belimbing bajo (Sarcotheca celebica Veldk). Journal TABARO, 2(2), 239–246. https://doi.org/10.35914/tabaro.v2i2.133
Herlina, L., Widianarko, B., Purnaweni, H., Sudarno, S., & Sunoko, H. R. (2020). Phytoremediation of lead contaminated soil using croton (Codiaeum variegatum) plants. Journal of Ecological Engineering, 21(5), 107–113. https://doi.org/10.12911/22998993/122238
Hilmi, M., Hamim, H., Sulistyaningsih, Y. C., & Taufikurahman. (2018). Growth, histochemical and physiological responses of non-edible oil producing plant (Reutealis trisperma) to gold mine tailings. Biodiversitas, 19(4), 1294–1302. https://doi.org/10.13057/biodiv/d190416
Indriyanto. (2006). Ekologi hutan. Bumi Aksara.
Indriyanto. (2010). Ekologi Hutan. Bumi Aksara.
Kartika, A. D., Pringgenies, D., & Ridlo, A. (2019). Kajian kandungan besi (Fe) dan seng (Zn) pada kerang hijau (Perna viridis) di perairan Bandengan, Jepara dan Tanjung Mas, Semarang. Jurnal Moluska Indonesia, 3(April), 5–12. https://doi.org/10.20874/jmi.moluska.2019.3.1.5-12
Kikis, C., Thalassinos, G., & Antoniadis, V. (2024). Soil Phytomining: Recent Developments—A Review. Soil Systems, 8(1). https://doi.org/10.3390/soilsystems8010008
Krebs, C. J. (1989). Ecological Methodology. New York: Harper & Row
Lopez, S., Benizri, E., Erskine, P. D., Cazes, Y., Morel, J. L., Lee, G., Permana, E., Echevarria, G., & van der Ent, A. (2019). Biogeochemistry of the flora of Weda Bay, Halmahera Island (Indonesia) focusing on nickel hyperaccumulation. Journal of Geochemical Exploration, 202, 113–127. https://doi.org/10.1016/j.gexplo.2019.03.011
Mabberley, D. J., Pannel, C. M. (1995). Meliaceae: Flora Malesiana 1 (1st ed.). Leiden: Hortus Botanicus.
Magurran, A. E. (2004). Measuring Biological Diversity. Oxford, UK: Blackwell Publishing.
McCartha, G. L., Taylor, C. M., van der Ent, A., Echevarria, G., Navarrete Gutiérrez, D. M., & Pollard, A. J. (2019). Phylogenetic and geographic distribution of nickel hyperaccumulation in neotropical Psychotria. American Journal of Botany, 106(10), 1377–1385. https://doi.org/10.1002/ajb2.1362
Mesjasz-Przybyłowicz, J., & Przybyłowicz, W. J. (2020). Ecophysiology of nickel hyperaccumulating plants from South Africa – from ultramafic soil and mycorrhiza to plants and insects. Metallomics, 12(7), 1018–1035. https://doi.org/10.1039/C9MT00282K
Mou, J., Liu, K., Huang, Y., Lin, J., He, X., Zhang, S., Li, D., Zu, Y., Chen, Z., Fu, S., Lin, H., & Liu, W. (2023). Species Diversity and Community Structure of Macrobenthos in the Cosmonaut Sea, East Antarctica. Diversity, 15(12), 1–13. https://doi.org/10.3390/d15121197
Musfal. (2020). Kesuburan Tanah dan Teknik Pengujian Status Hara. Medan: Enam Media.
Nero, B. F. (2021). Structure, composition and diversity of restored forest ecosystems on mine-spoils in South-Western Ghana. PLoS ONE, 16(6), 1–22. https://doi.org/10.1371/journal.pone.0252371
Neto, C., Catarino, A., Sobreiro, J., das Dores, J., Patanita, M., Tomaz, A., & Palma, P. (2024). Effect of Different Irrigated Crop Successions on Soil Carbon and Nitrogen–Phosphorus–Potassium Budget Under Mediterranean Conditions. Agriculture (Switzerland), 14(11), 1–21. https://doi.org/10.3390/agriculture14111908
Nurjaman, D., Kusmoro, J., & Santoso, P. (2017). Perbandingan Struktur dan Komposisi Vegetasi Kawasan Rajamantri dan Batumeja Cagar Alam Pananjung Pangandaran, Jawa Barat. Jurnal Biodjati, 2(2), 167–179. https://doi.org/10.15575/biodjati.v2i2.1304
Odum, E. P. (1971). Fundamental of Ecology. Philadelphia: WB Sounders Company.
Pitopang, R., Lapandjang, I. F. B. (2011). Profil herbarium celebense dan deskripsi 100 jenis pohon khas Sulawesi. Palu: UNTAD Press.
Reeves, R. D., van der Ent, A., & Baker, A. J. M. (2018). Global distribution and ecology of hyperaccumulator plants. Springer International Publishing. https://doi.org/10.1007/978-3-319-61899-9_5
Rotich, B., Szegi, T., Gelsleichter, Y. A., Fuchs, M., Ocansey, C. M., Phenson, J. N., Abdulkadir, M., Kipkulei, H., Wawire, A., Mutuma, E., Mesele, S. A., Michéli, E., & Csorba, Á. (2025). Variation in soil organic carbon and total nitrogen stocks across elevation gradients and soil depths in the Mount Kenya East Forest. Land, 14(6), 1–17. https://doi.org/10.3390/land14061217
Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., Rehim, A., & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 171, 710–721. https://doi.org/10.1016/j.chemosphere.2016.12.116
Setyaningsih, L., Wulandari, A. S., & Hamim, H. (2018). Growth of typha grass (Typha angustifolia) on gold-mine tailings with application of arbuscular mycorrhiza fungi. Biodiversitas, 19(2), 454–459. https://doi.org/10.13057/biodiv/d190218
She, Y., Li, X., Li, C., Yang, P., Song, Z., & Zhang, J. (2023). Relationship between species diversity and community stability in degraded Alpine Meadows during bare patch succession. Plants, 12(20), 1–16. https://doi.org/10.3390/plants12203582
Soendjoto, M., Riefani, M., Triwibowo, D., Wahyudi, F., Choirun, D., & Perdana, Y. (2023). Spontaneously growing plants on revegetation sites of former coal mine in South Kalimantan Province, Indonesia. Biodiversitas Journal of Biological Diversity, 24, 1610–1620. https://doi.org/10.13057/biodiv/d240333
Solfiyeni, Rahmayani, H., & Gusmawarni, W. (2023). Vegetation Analysis of sapling and understorey invaded by invasive alien species (IAS) Bellucia pentamera naudin in Lembah Harau Sanctuary. Jurnal Sains Natural, 13(3), 115–125. https://doi.org/10.31938/jsn.v13i3.455
Statista. (2023). Major Countries in Worldwide Nickel Mine Production in 2022. Retrieved from https://www.statista.com/statistics/272379/major-countries-in-worldwide-nickel-mine-production/
Steenis, C. G. G. V. (1972). The Mountain Flora of Java. Leiden: Brill Publishers.
Suazo-Ortuño, I., Lopez-Toledo, L., Alvarado-Díaz, J., & Martínez-Ramos, M. (2015). Land-use change dynamics, soil type and species forming mono-dominant patches: the case of Pteridium aquilinum in a Neotropical Rain Forest Region. Biotropica, 47(1), 18–26. Retrieved from https://www.jstor.org/stable/48575161
Taiz, L., Møller, I. M., Murphy, A., & Zeiger, E. (2023). Plant physiology and development. https://doi.org/10.1093/hesc/9780197614204.001.0001
Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. S. (2015). Plant Physiology and Development. Sunderland: Sinauer Associates.
Ullah, A., Heng, S., Munis, M. F. H., Fahad, S., & Yang, X. (2015). Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environmental and Experimental Botany, 117, 28–40. https://doi.org/10.1016/j.envexpbot.2015.05.001
Van der Ent, A., Baker, A. J. M., van Balgooy, M. M. J., & Tjoa, A. (2013). Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining. Journal of Geochemical Exploration, 128, 72–79. https://doi.org/10.1016/j.gexplo.2013.01.009
Van der Ent, A., Echevarria, G., & Tibbett, M. (2016). Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology, 26(2), 67–82. https://doi.org/10.1007/s00049-016-0209-x
Vischetti, C., Marini, E., Casucci, C., & De Bernardi, A. (2022). Nickel in the environment: bioremediation techniques for soils with low or moderate contamination in European Union. Environments - MDPI, 9(10). https://doi.org/10.3390/environments9100133
Wang, S., Yuan, S., Su, L., Lv, A., Zhou, P., & An, Y. (2017). Aluminum toxicity in alfalfa (Medicago sativa) is alleviated by exogenous foliar IAA inducing reduction of Al accumulation in cell wall. Environmental and Experimental Botany, 139, 1–13. https://doi.org/10.1016/j.envexpbot.2017.03.018.
Yang, L., Huang, Y., Lima, L. V., Sun, Z., Liu, M., Wang, J., Liu, N., & Ren, H. (2020). Rethinking the ecosystem functions of Dicranopteris, a Widespread Genus of Ferns. Frontiers in Plant Science, 11, 581513. https://doi.org/10.3389/fpls.2020.581513
Zhou, M., Zhu, Q., Wang, H., Wang, X., Zhan, Y., Lin, J., Zhang, Y., Huang, Y., & Jiang, F. (2024). Effect of soil moisture content on the shear strength of Dicranopteris linearis-rooted soil in different soil layers of collapsing wall. Forests, 15(3), 1–19. https://doi.org/10.3390/f15030460
License
Copyright (c) 2025 Faisal, Nina Ratna Djuita, Hamim

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






