Vol. 11 No. 9 (2025): September
Open Access
Peer Reviewed

Personalized Explainable AI: Dynamic Adjustment of Explanations for Novice and Expert Users

Authors

Afrizal Zein

DOI:

10.29303/jppipa.v11i9.12586

Published:

2025-09-30

Downloads

Abstract

Explainable Artificial Intelligence (XAI) has emerged as a crucial aspect of building trust and transparency in AI-driven systems. However, existing explanation methods often apply a uniform approach, overlooking the diverse backgrounds and expertise levels of users. This paper proposes a personalized explainable AI framework that dynamically adjusts the complexity, depth, and presentation of machine-generated explanations according to the user's expertise—be it novice or expert. By integrating user modeling and adaptive explanation strategies, the system can deliver tailored information that enhances user understanding, satisfaction, and decision-making. We evaluate the proposed approach through experiments involving participants with varying expertise levels interacting with AI-based decision systems. The results show that adaptive explanations significantly improve comprehension for both novice and expert users compared to static, one-size-fits-all explanations. These findings highlight the importance of user-centered design in XAI and suggest practical pathways for future implementation in real-world applications.

Keywords:

Adaptive Explanations AI Interpretability Human-Centered AI Transparency User Expertise User Modeling

References

Adadi, A., & Berrada, M. (2018). Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI. IEEE Access, 6, 52138–52160. https://doi.org/10.1109/ACCESS.2018.2870052

Brey, de. (2018). Status and Trends in the Education of Racial and Ethnic Groups. National Center for Education Statistics. Retrieved from https://eric.ed.gov/?id=ED592833

Doshi-Velez, F., & Kim, B. (2017). Towards A Rigorous Science of Interpretable Machine Learning. ArXiv Preprint ArXiv. https://doi.org/10.48550/arXiv.1702.08608

Ehsan, U., Liao, Q. V, Muller, M., & Riedl, M. O. (2021). Expanding explainability: Towards social transparency in AI systems. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–19. https://doi.org/10.1145/3411764.3445514

Eiband, M., Schneider, H., Bilandzic, M., Fazekas-Con, J., Haug, M., & Hussmann, H. (2018). Bringing transparency design into practice. Proceedings of the 23rd International Conference on Intelligent User Interfaces, 211–223. https://doi.org/10.1145/3172944.317296

Georgenia Ezeji, N., Ifeanyi Chibueze, K., Nwamaka, E. G., Kingsley, C. I., & Nnenna, N.-N. H. (2024). Enhancing Trust and Transparency in AI: A Comprehensive Study on Explainable Artificial Intelligence (XAI) Techniques and Applications. Conference: 2024 International Conference Of Engineering Innovation For Sustainable Development (ICEISD). https://doi.org/10.5281/zenodo.13889644

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Pedreschi, D., & Giannotti, F. (2018). A Survey Of Methods For Explaining Black Box Models. ACM Computing Surveys (CSUR), 51(5), 1–42. Retrieved from http://arxiv.org/abs/1802.01933

Hoff, K. A., & Bashir, M. (2015). Trust in automation: Integrating empirical evidence on factors that influence trust. Human Factors, 57(3), 407–434. https://doi.org/10.1177/001872081454757

Hoffman, R. R., Mueller, S. T., Klein, G., & Litman, J. (2018). Metrics for Explainable AI: Challenges and Prospects Institute for Human and Machine Cognition. ArXiv Preprint ArXiv:1812.04608. https://doi.org/10.48550/arXiv.1812.04608

Holzinger, A., Langs, G., Denk, H., Zatloukal, K., & Müller, H. (2019). Causability and explainability of artificial intelligence in medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(4). https://doi.org/10.1002/widm.1312

Lee, J. D., & See, K. A. (2004). Trust in automation: Designing for appropriate reliance. Human Factors, 46(1), 50–80. https://doi.org/10.1518/hfes.46.1.50_30392

Lim, B. Y., & Dey, A. K. (2009). Assessing demand for intelligibility in context-aware applications. Proceedings of the 11th International Conference on Ubiquitous Computing, 195–204. https://doi.org/10.1145/1620545.1620576

Lundberg, S. M., & Lee, S.-I. (2017). Consistent feature attribution for tree ensembles. ArXiv Preprint ArXiv:1706.06060. Retrieved from https://shorturl.asia/NcbRC

Malamuthu, B. K., Balakrishnan, T. P., Deepika, J., P, N., Venkataramanaiah, B., & Malathy, V. (2025). Explainable AI for Decision-Making: A Hybrid Approach to Trustworthy Computing. International Journal of Computational and Experimental Science and Engineering, 11(2). https://doi.org/10.22399/ijcesen.1684

Markus, A. F., Kors, J. A., & Rijnbeek, P. R. (2021). The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and evaluation strategies. Journal of Biomedical Informatics, 113, 103655. https://doi.org/10.1016/j.jbi.2020.103655

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. In Artificial Intelligence (Vol. 267, pp. 1–38). Elsevier B.V. https://doi.org/10.1016/j.artint.2018.07.007

Mohammed, A. A. A. (2025). Adaptive Explainable AI: Personalizing Machine Explanations Based on User Expertise Levels. Journal of Posthumanism, 5(7). https://doi.org/10.63332/joph.v5i7.2793

Mohseni, S., Zarei, N., & Ragan, E. D. (2021). A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI Systems. ACM Transactions on Interactive Intelligent Systems, 11(3–4). https://doi.org/10.1145/3387166

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should i trust you?” Explaining the predictions of any classifier. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. https://doi.org/10.1145/2939672.2939778

Ribera, M., & Lapedriza, A. (2019). Can we do better explanations? A proposal of user-centered explainable AI. CEUR Workshop Proceedings, 1–4. Retrieved from https://openaccess.uoc.edu/handle/10609/99643

Schneider, J., & Handali, J. (2019). Personalized explanation in machine learning: A conceptualization. ArXiv Preprint ArXiv:1901.00770. https://doi.org/10.48550/arXiv.1901.00770

Sokol, K., & Flach, P. (2022). Explainability Is in the Mind of the Beholder: Establishing the Foundations of Explainable Artificial Intelligence. Retrieved from http://arxiv.org/abs/2112.14466

Solanke, A. A. (2022). Explainable digital forensics AI: Towards mitigating distrust in AI-based digital forensics analysis using interpretable models. Forensic Science International: Digital Investigation, 42. https://doi.org/10.1016/j.fsidi.2022.301403

Sweller, J., Merriënboer, J. J. G., & Paas, F. (2019). Cognitive Architecture and Instructional Design: 20 Years Later. Educational Psychology Review, 31(2), 261–292. https://doi.org/10.1007/s10648-019-09465-5

Teso, S., & Kersting, K. (2019). Explanatory interactive machine learning. Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, 239–245. https://doi.org/10.1145/3306618.3314293

Author Biography

Afrizal Zein, Universitas Pamulang

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Zein, A. (2025). Personalized Explainable AI: Dynamic Adjustment of Explanations for Novice and Expert Users. Jurnal Penelitian Pendidikan IPA, 11(9), 513–520. https://doi.org/10.29303/jppipa.v11i9.12586