Modeling of Contaminant Transport Through Groundwater Flow Using Visual MODFLOW in the Kasin Sub-Watershed, Malang City

Authors

Alifa Fajriani Martius , Emma Yuliani , Andre Primantyo Hendrawan , Andre Primantyo Hendrawan , Very Dermawan

DOI:

10.29303/jppipa.v11i11.12615

Published:

2025-11-25

Downloads

Abstract

This study investigates groundwater flow and nitrate transport in the Kasin Sub-watershed, Malang City, using Visual MODFLOW integrated with the MT3DMS module. Hydrogeological and geoelectrical data, groundwater levels, and nitrate concentration measurements (110 ppm) were used as model inputs. A transient simulation over 3,600 days (±10 years) was conducted to analyze plume migration. The results show that groundwater flow follows topographic gradients, moving from upland recharge zones to lowland discharge zones, with an average velocity of 0.25–0.40 m/day. The nitrate plume migrated southward, extending ±600–700 m horizontally and reaching ±25 m in depth. High concentrations (>100 ppm) remained near the source, while concentrations decreased to 20–40 ppm at greater distances due to advection and dispersion. Vertical sections indicated plume penetration into deeper aquifers, influenced by hydraulic pressure differences between strata, while permeable sandy and pumice tuff layers facilitated migration and clay acted as aquitards. These findings highlight the persistent nature of nitrate contamination, the role of aquifer heterogeneity, and the vulnerability of groundwater in urban catchments. In conclusion, nitrate pollution poses long-term risks to groundwater quality, emphasizing the importance of monitoring networks, aquifer protection policies, and improved land-use management to mitigate further contamination.

Keywords:

Aquifer vulnerability, Groundwater modeling, Kasin Sub-watershed, MT3DMS, Nitrate contamination, Visual MODFLOW

References

Akiang, F. B., Emujakporue, G. O., & Nwosu, L. I. (2023). Leachate delineation and aquifer vulnerability assessment using geo-electric imaging in a major dumpsite around Calabar Flank, Southern Nigeria. Environmental Monitoring and Assessment, 195(1), 123. https://doi.org/10.1007/s10661-022-10643-2

Alam, S. M. K., Li, P., & Fida, M. (2024). Groundwater Nitrate Pollution Due to Excessive Use of N-Fertilizers in Rural Areas of Bangladesh: Pollution Status, Health Risk, Source Contribution, and Future Impacts. Exposure and Health, 16(1), 159–182. https://doi.org/10.1007/s12403-023-00545-0

Bijay-Singh, & Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem. SN Applied Sciences, 3(4), 518. https://doi.org/10.1007/s42452-021-04521-8

Chen, C.-S., Tu, C.-H., Chen, S.-J., & Chen, C.-C. (2016). Simulation of Groundwater Contaminant Transport at a Decommissioned Landfill Site—A Case Study, Tainan City, Taiwan. International Journal of Environmental Research and Public Health, 13(5), 467. https://doi.org/10.3390/ijerph13050467

Eluwole, A. B., OlaOlorun, O. A., Ademilua, O. L., Talabi, A. O., Aturamu, A. O., Ajisafe, Y. C., Ojo, O. F., & Ajayi, C. A. (2020). Subsurface electrical resistivity modelling over a suspected fault zone at Ojirami, Southwestern Nigeria. Modeling Earth Systems and Environment, 6(4), 2543–2551. https://doi.org/10.1007/s40808-020-00848-0

Eze, S. U., Abolarin, M. O., Ozegin, K. O., Bello, M. A., & William, S. J. (2022). Numerical modeling of 2-D and 3-D geoelectrical resistivity data for engineering site investigation and groundwater flow direction study in a sedimentary terrain. Modeling Earth Systems and Environment, 8(3), 3737–3755. https://doi.org/10.1007/s40808-021-01325-y

Foster, S. (2022). The key role for groundwater in urban water-supply security. Journal of Water and Climate Change, 13(10), 3566–3577. https://doi.org/10.2166/wcc.2022.174

Ibrahim, D., Nemoto, T., & Raghavan, V. (2025). Hydrogeophysical Analysis of Vertical Electrical Soundings for Groundwater Potential and Aquifer Vulnerability Evaluation in the Federal Capital Territory, Abuja, Nigeria. International Journal of Geoinformatics, 21(1), 97–110. https://doi.org/10.52939/ijg.v21i1.3803

Jabeen, M., Ahmad, Z., & Ashraf, A. (2019). Monitoring regional groundwater flow and contaminant transport in Southern Punjab, Pakistan, using numerical modeling approach. Arabian Journal of Geosciences, 12(18), 570. https://doi.org/10.1007/s12517-019-4766-5

Kuroda, K., & Fukushi, T. (2009). Groundwater Contamination in Urban Areas. Jurnal Teknik Lingkungan, 23(1), 125–149. https://doi.org/10.1007/978-4-431-78399-2_7

Laoufi, A., Boudjema, A., Guettaia, S., Derdour, A., & Almaliki, A. H. (2024). Integrated Simulation of Groundwater Flow and Nitrate Transport in an Alluvial Aquifer Using MODFLOW and MT3D: Insights into Pollution Dynamics and Management Strategies. Sustainability, 16(23), 10777. https://doi.org/10.3390/su162310777

Mulyadi, D., & Rosadi, P. E. (2022). Pemodelan Air Tanah Pada Tambang Terbuka Andesit Di Desa Dadirejo, Kecamatan Bagelen, Kabupaten Purworejo, Provinsi Jawa Tengah. Jurnal Inovasi Pertambangan Dan Lingkungan, 1(2), 59–70. https://doi.org/10.15408/jipl.v1i2.22761

Prayogo, T. B., Bisri, M., Fadhia, K. F., & Martius, A. F. (2024). Aquifer potential investigation applying vertical electrical sounding in Bango sub-catchment area. IOP Conference Series: Earth and Environmental Science, 1311(1), 012038. https://doi.org/10.1088/1755-1315/1311/1/012038

Priyan, K. (2021). Issues and Challenges of Groundwater and Surface Water Management in Semi-Arid Regions. In Groundwater Resources Development and Planning in the Semi-Arid Region (pp. 1–17). Springer International Publishing. https://doi.org/10.1007/978-3-030-68124-1_1

Rajaeian, S., Ketabchi, H., & Ebadi, T. (2023). Investigation on quantitative and qualitative changes of groundwater resources using MODFLOW and MT3DMS: a case study of Hashtgerd aquifer, Iran. Environment, Development and Sustainability, 26(2), 4679–4704. https://doi.org/10.1007/s10668-022-02904-4

Rashmi, I., Roy, T., Kartika, K. S., Pal, R., Coumar, V., Kala, S., & Shinoji, K. C. (2020). Organic and Inorganic Fertilizer Contaminants in Agriculture: Impact on Soil and Water Resources. In Contaminants in Agriculture (pp. 3–41). Springer International Publishing. https://doi.org/10.1007/978-3-030-41552-5_1

Rasool, U., Chen, J., Muhammad, S., Siddique, J., Venkatramanan, S., Sabarathinam, C., Siddique, M. A., & Rasool, M. A. (2020). Geoinformatics and geophysical survey-based estimation of best groundwater potential sites through surface and subsurface indicators. Arabian Journal of Geosciences, 13(15), 702. https://doi.org/10.1007/s12517-020-05496-3

Samborska-Goik, K., & Pogrzeba, M. (2024). A Critical Review of the Modelling Tools for the Reactive Transport of Organic Contaminants. Applied Sciences, 14(9), 3675. https://doi.org/10.3390/app14093675

Shakeri, R., Nassery, H. R., & Ebadi, T. (2023). Numerical modeling of groundwater flow and nitrate transport using MODFLOW and MT3DMS in the Karaj alluvial aquifer, Iran. Environmental Monitoring and Assessment, 195(1), 242. https://doi.org/10.1007/s10661-022-10881-4

Zheng, C., & Wang, P. P. (1999). An integrated global and local optimization approach for remediation system design. Water Resources Research, 35(1), 137–148. https://doi.org/10.1029/1998WR900032

Author Biographies

Alifa Fajriani Martius, u

Emma Yuliani, Universitas Brawijaya

Andre Primantyo Hendrawan, Universitas Brawijaya

Andre Primantyo Hendrawan, Universitas Brawijaya

Very Dermawan, Universitas Brawijaya

Downloads

Download data is not yet available.

How to Cite

Martius, A. F., Yuliani, E., Hendrawan, A. P., Hendrawan, A. P., & Dermawan, V. (2025). Modeling of Contaminant Transport Through Groundwater Flow Using Visual MODFLOW in the Kasin Sub-Watershed, Malang City. Jurnal Penelitian Pendidikan IPA, 11(11), 122–128. https://doi.org/10.29303/jppipa.v11i11.12615