Vol. 11 No. 12 (2025): December
Open Access
Peer Reviewed

From Water Allocation to Food Security: Irrigation System Optimization through Deterministic Dynamic Programming in the Gembolo Irrigation Area

Authors

Mokhamad Rusdha Maulana , Lily Montarcih Limantara , itojo Tri Juwono

DOI:

10.29303/jppipa.v11i12.12630

Published:

2025-12-25

Downloads

Abstract

Inefficient irrigation water distribution remains a critical barrier to achieving optimal crop productivity and ensuring food security in rural Indonesia. This study focuses on the Gembolo Irrigation Area, Mojokerto Regency, by applying Deterministic Dynamic Programming (DDP) to optimize water allocation under a Rice–Rice–Secondary Crop (RTTG) rotation. The comprehensive integration of hydrological, climatological, and cropping data was employed to construct a DDP model that synchronizes irrigation supply with crop water demand across nine irrigation structures (G1–G9). The optimization results reveal significant improvements: irrigated area expanded by 254 ha, cropping intensity increased from 277 to 300%, and farmers’ net income rose by IDR 5.3 billion compared to the existing allocation scheme. These findings demonstrate the capacity of DDP to enhance water-use efficiency while strengthening the resilience and sustainability of rural agricultural systems. The study highlights the importance of data-driven optimization as a decision-support framework for advancing integrated irrigation management and rural development.

Keywords:

Dynamic programming Irrigation optimization Rural development Sustainable agriculture

References

Abdullah, S., Sarwoprasodjo, S., & Hapsari, D. R. (2023). Participatory Communication to Strengthen Farmers’ Empowerment and Adaptation in Facing the Impacts of Climate Change. HABITAT, 34(3), 245–255. https://doi.org/10.21776/ub.habitat.2023.034.3.22 DOI: https://doi.org/10.21776/ub.habitat.2023.034.3.22

Ali, M. H., & Talukder, M. S. U. (2008). Increasing Water Productivity in Crop Production—A Synthesis. Agricultural Water Management, 95(11), 1201–1213. https://doi.org/10.1016/j.agwat.2008.06.008 DOI: https://doi.org/10.1016/j.agwat.2008.06.008

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements (FAO Irrigation and Drainage Paper No. 56). Rome: FAO.

Archibald, T. (2018). Review of Mathematical Programming Applications in Water Resource Management under Uncertainty: Trends, Methods and Research Gaps. Water Resources Management, 32(7), 2197–2229. https://doi.org/10.1007/s11269-018-1926-2

Atasa, D., Widayanti, S., Laily, D. W., & Toiba, H. (2024). Horticultural Farmer’s Perceptions and Adaptations to Climate Change in East Java, Indonesia. HABITAT, 35(1), 115–122. https://doi.org/10.21776/ub.habitat.2024.035.1.11 DOI: https://doi.org/10.21776/ub.habitat.2024.035.1.11

Barker, R., & Molle, F. (2004). Evolution of Irrigation in South and Southeast Asia (Comprehensive Assessment Research Report 5). Colombo, Sri Lanka: International Water Management Institute (IWMI).

Bidang Sumber Daya Air, Dinas PUPR Kabupaten Mojokerto. (2025). Laporan Tahunan Pengelolaan Irigasi dan Sumber Daya Air Kabupaten Mojokerto Tahun 2025. Mojokerto: Dinas PUPR Kabupaten Mojokerto.

BMKG Juanda. (2025). Laporan Data Klimatologi Tahunan Stasiun Meteorologi Kelas I Juanda. Surabaya: Badan Meteorologi, Klimatologi, dan Geofisika.

Delgoda, D., Malano, H., Saleem, S. K., & Halgamuge, M. N. (2017). A Novel Generic Optimization Method for Irrigation Scheduling under Multiple Objectives and Multiple Hierarchical Layers in a Canal Network. Advances in Water Resources, 105, 28–44. https://doi.org/10.1016/j.advwatres.2017.04.025 DOI: https://doi.org/10.1016/j.advwatres.2017.04.025

Djaman, K. (2018). Crop Evapotranspiration, Irrigation Water Requirement and Water Productivity for Maize in New Mexico. Water, 10(4), 405. https://doi.org/10.3390/w10040405 DOI: https://doi.org/10.3390/w10040405

Fan, Y. (2023). A Model Coupling Water Resource Allocation and Canal Operation for Improved Distribution. Water Resources Management. https://doi.org/10.1007/s11269-023-03437-9 DOI: https://doi.org/10.1007/s11269-023-03437-9

Fan, Y., Chen, H., Gao, Z., & Chang, X. (2023). Canal Water Distribution Optimization Model Based on Water Supply Conditions. Computers and Electronics in Agriculture, 205, 107565. https://doi.org/10.1016/j.compag.2022.107565 DOI: https://doi.org/10.1016/j.compag.2022.107565

FAO. (2021). The State of Food Security and Nutrition in the World 2021. Rome: Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/cb4474en DOI: https://doi.org/10.4060/cb4474en

Guo, S. (2018). A Multi-Objective Hierarchical Model for Irrigation Scheduling at Network Level. Sustainability, 11(1), 24. https://doi.org/10.3390/su11010024 DOI: https://doi.org/10.3390/su11010024

Handini, W. (2024). Prototype Design of Micro Hydro Power with Irrigation Water in Rice Fields Based on IoT. Jurnal Penelitian Pendidikan IPA, 10(9). https://doi.org/10.29303/jppipa.v10i9.3126 DOI: https://doi.org/10.29303/jppipa.v10i9.8553

Jamal, A., Cai, X., Qiao, X., Garcia, L., Wang, J., Amori, A., & Yang, H. (2023). Real-Time Irrigation Scheduling Based on Weather Forecasts and Data Assimilation. Water Resources Research, 59, e2023WR035810. https://doi.org/10.1029/2023WR035810 DOI: https://doi.org/10.1029/2023WR035810

Jin, L., Huang, G., & Fan, Y. (2012). A Hybrid Dynamic Dual Interval Programming for Irrigation Water Allocation under Uncertainty. Water Resources Management, 26(5), 1183–1200. https://doi.org/10.1007/s11269-011-9953-4 DOI: https://doi.org/10.1007/s11269-011-9953-4

Karamouz, M., & Houck, M. H. (1992). Optimization and Simulation of Multiple Reservoir Systems. Journal of Water Resources Planning and Management. https://doi.org/10.1061/(ASCE)0733-9496(1992)118:1(71) DOI: https://doi.org/10.1061/(ASCE)0733-9496(1992)118:1(71)

Kassing, R. (2020). Optimal Control for Precision Irrigation of a Large-Scale Center Pivot System. Water Resources Research. https://doi.org/10.1029/2019WR026989 DOI: https://doi.org/10.1029/2019WR026989

Kodoatie, R. J., & Sjarief, R. (2010). Pengelolaan Sumber Daya Air Terpadu. Yogyakarta: Andi Offset.

Laskookalayeh, M., Javanrud, N., & Jalili, M. (2022). Optimization of Irrigation Programming for Different Water Allocation Strategies at Network Level: Method and Application. Water Resources Management. https://doi.org/10.1007/s11269-024-03938-1 DOI: https://doi.org/10.1007/s11269-024-03938-1

Li, Q. (2020). Multistage Stochastic Programming Modeling for Farmland Management under Uncertainty. PLoS ONE, 15(8), e0233723. https://doi.org/10.1371/journal.pone.0233723 DOI: https://doi.org/10.1371/journal.pone.0233723

Li, Y. P., Huang, G. H., Nie, S. L., & Liu, L. (2012). Inexact Multistage Stochastic Integer Programming for Water Resources Management under Uncertainty. Journal of Hydrology, 420–442, 225–239. https://doi.org/10.1016/j.jhydrol.2011.12.025 DOI: https://doi.org/10.1016/j.jhydrol.2011.12.025

Liao, X., Meng, C., Cai, B., & Zhao, W. (2020). Interval-Parameter Two-Stage Stochastic Programming Model of Ecological Water Replenishment Scheme. Water, 12(6), 1520. https://doi.org/10.3390/w12061520 DOI: https://doi.org/10.3390/w12061520

Linker, R. (2021). Stochastic Model-Based Optimization of Irrigation Scheduling. Agricultural Water Management, 243, 106480. https://doi.org/10.1016/j.agwat.2020.106480 DOI: https://doi.org/10.1016/j.agwat.2020.106480

Liu, X., & Yang, D. (2021). Irrigation Schedule Analysis and Optimization under the Different Combination of P and ET0 Using a Spatially Distributed Crop Model. Agricultural Water Management, 256, 107084. https://doi.org/10.1016/j.agwat.2021.107084 DOI: https://doi.org/10.1016/j.agwat.2021.107084

Mushthofa, M., Suripin, S., & Wulandari, D. A. (2025). Literature Review: Water Spinach Variety KK-09 for Irrigation Optimization in Dry Land. Jurnal Penelitian Pendidikan IPA, 11(9), 48–57. https://doi.org/10.29303/jppipa.v11i9.11380 DOI: https://doi.org/10.29303/jppipa.v11i9.11380

Paudyal, G. N. (1990). Two-Step Dynamic Programming Approach for Optimal Water Allocation in a Run-of-the-River Type Irrigation Project. Water Resources Management, 4(1), 1–14. https://doi.org/10.1007/BF00431143 DOI: https://doi.org/10.1007/BF00431143

Pereira, L. S., Allen, R. G., Smith, M., & Raes, D. (2015a). Crop Evapotranspiration Estimation with FAO56: Past and Future. Agricultural Water Management, 147, 4–20. https://doi.org/10.1016/j.agwat.2014.07.031 DOI: https://doi.org/10.1016/j.agwat.2014.07.031

Pereira, L. S., Paredes, P., Rodrigues, G. C., & Neves, M. (2015b). Modeling Evapotranspiration and Crop Water Productivity in Irrigation Scheduling, Supporting Water Productivity Analysis. Agricultural Water Management, 147, 13–26. https://doi.org/10.1016/j.agwat.2014.05.002 DOI: https://doi.org/10.1016/j.agwat.2014.05.002

Prastyo, D., Suhartono, S., & Susanto, H. (2021). Optimization of Irrigation Benefits Using Dynamic Programming Method in Banyuwangi, Indonesia. Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, 12(1), 45–56. https://doi.org/10.24176/simet.v12i1.4920

Santosa, R. R. A., Pratiwi, E. P. A., & Istiarto, I. (2025). Establishing Semantok Reservoir Operation Rules to Obtain the Highest Crop Intensity in Semantok Irrigation Area. Jurnal Penelitian Pendidikan IPA, 11(8), 1180–1192. https://doi.org/10.29303/jppipa.v11i8.11669

Sunantara, I. M., & Ramirez, J. A. (2017). A Two-Stage Stochastic Programming Model for Seasonal and Intraseasonal Irrigation Water Management. Computers and Electronics in Agriculture, 134, 160–172. https://doi.org/10.1016/j.compag.2016.12.009 DOI: https://doi.org/10.1016/j.compag.2016.12.009

Suryadi, F. X. (2014). Water Management for Rice Cultivation: Issues and Challenges in Indonesia. Irrigation and Drainage, 63(2), 155–165. https://doi.org/10.1002/ird.1812 DOI: https://doi.org/10.1002/ird.1812

Suryana, A. (2018). Strategi Ketahanan Pangan di Indonesia: Tantangan dan Prospek. Forum Penelitian Agro Ekonomi, 36(1), 1–12. https://doi.org/10.21082/fae.v36n1.2018.1-12 DOI: https://doi.org/10.21082/fae.v36n1.2018.1-12

Valiantzas, J. D. (2013). Simplified Forms for the Standardized FAO-56 Penman–Monteith Reference Evapotranspiration Using Limited Weather Data. Journal of Hydrology, 505, 13–23. https://doi.org/10.1016/j.jhydrol.2013.09.005 DOI: https://doi.org/10.1016/j.jhydrol.2013.09.005

Yakowitz, S. (1992). Dynamic Programming Applications in Water Resources. Journal of Hydrology, 138(1–2), 267–281. https://doi.org/10.1016/0022-1694(92)90198-D

Yang, Y., Hu, J., Porter, D., Marek, T., & Heflin, K. (2020). Deep Reinforcement Learning-Based Irrigation Scheduling. Transactions of the ASABE, 63(3), 549–556. https://doi.org/10.13031/trans.13633 DOI: https://doi.org/10.13031/trans.13633

Author Biographies

Mokhamad Rusdha Maulana, Universitas Brawijaya

Author Origin : Indonesia

Lily Montarcih Limantara, Universitas Brawijaya

Author Origin : Indonesia

itojo Tri Juwono, Brawijaya University

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Maulana, M. R., Limantara, L. M., & Juwono, itojo T. (2025). From Water Allocation to Food Security: Irrigation System Optimization through Deterministic Dynamic Programming in the Gembolo Irrigation Area. Jurnal Penelitian Pendidikan IPA, 11(12), 1402–1412. https://doi.org/10.29303/jppipa.v11i12.12630