Vol. 11 No. 10 (2025): October
Open Access
Peer Reviewed

The Effect of Lecithin and Carboxymethyl Cellulose (CMC) Concentrations on the Physical Characteristics of Sago Starch-Based Edible Films

Authors

A. Hermina Julyaningsih , Andi Nur Faidah Rahman , Febriana Intan Permata Hati

DOI:

10.29303/jppipa.v11i10.12665

Published:

2025-10-25

Downloads

Abstract

Microplastics have begun to be detected in human food sources such as water and marine fish. One of the solutions that has been increasingly studied and developed is edible film. Sago starch holds significant potential to be developed as a raw material for edible film production. However, the physical characteristics of edible films made from pure sago starch tend to be brittle, water-soluble, and mechanically weak. To enhance their physical quality, additives such as lecithin and carboxymethyl cellulose or CMC are required. This study aimed to evaluate the physical properties of sago-based edible films, including thickness, solubility, tensile strength, and water vapor transmission rate (WVTR), at various concentrations of lecithin (0.3%, 0.5%, 0.7%, and 1.5%) and CMC (0.1%, 0.3%, 0.5%, and 0.7%) to determine the optimal formulation for use as food packaging. The research employed experimental research, using Completely Randomized Design. Data were analyzed using one-way ANOVA followed by Duncan’s post hoc test. Results showed that both lecithin and CMC concentrations significantly affected the physical characteristics of the edible films. Based on these observations, treatment B4 was identified as having the best overall physical characteristics, providing a good balance between mechanical strength and water resistance with adequate film thickness.

Keywords:

CMC Edible film Lechitin Sago starch

References

Aguirre, J., Leonzapata, M., Alvarezperez, O., Torres, C., Nieto-oropeza, D., Ventura-sobrevilla, J., Aguilar, M., Ruelas-chacón, X., Rojas, R., & Elena, M. (2018). Packaging for Foods. In Food Packaging and Preservation. Elsevier Inc. https://doi.org/10.1016/B978-0-12-811516-9/00001-4

Charpentier-Valenza, D., Merle, L., Mocanu, G., Picton, L., & Muller, G. (2005). Rheological properties of hydrophobically modified carboxymethylcelluloses. Carbohydrate Polymers, 60(1), 87–94. https://doi.org/10.1016/j.carbpol.2004.11.030

Chung, C., Koo, C. K. W., Sher, A., Fu, J. T. R., Rousset, P., & McClements, D. J. (2019). Modulation of caseinate-stabilized model oil-in-water emulsions with soy lecithin. Food Research International, 122(January), 361–370. https://doi.org/10.1016/j.foodres.2019.04.032

Désiré, A. Y., Charlemagne, N., Roger, K. B., Souleymane, C., Georges, A. N., Marianne, S., & FabriceAchille, T. (2018). Effect of glycerol, peanut oil and soybean lecithin contents on the properties of biodegradable film of improved cassava starches from Côte d’Ivoire. International Journal of Environment, Agriculture and Biotechnology, 3(4), 1432–1440. https://doi.org/10.22161/ijeab/3.4.39

Dewi, R., Rahmi, R., & Nasrun, N. (2021). Perbaikan Sifat Mekanik Dan Laju Transmisi Uap Air Edible Film Bioplastik Menggunakan Minyak Sawit Dan Plasticizer Gliserol Berbasis Pati Sagu. Jurnal Teknologi Kimia Unimal, 8(1), 61. https://doi.org/10.29103/jtku.v10i1.4177

Dhumal, C. V., Ahmed, J., Bandara, N., & Sarkar, P. (2019). Improvement of antimicrobial activity of sago starch/guar gum bi-phasic edible films by incorporating carvacrol and citral. Food Packaging and Shelf Life, 21(August), 100380. https://doi.org/10.1016/j.fpsl.2019.100380

Dickinson, E. (2009). Hydrocolloids and emulsion stability. In Handbook of Hydrocolloids: Second Edition. Woodhead Publishing Limited. https://doi.org/10.1533/9781845695873.23

Dirpan, A., Ainani, A. F., & Djalal, M. (2023). A Review on Biopolymer-Based Biodegradable Film for Food Packaging: Trends over the Last Decade and Future Research. Polymers, 15(13), 2781. https://doi.org/10.3390/polym15132781

Ehara, H., & Toyoda, Y. (2018). Improvement of sago processing machinery. In Sago Palm: Multiple Contributions to Food Security and Sustainable Livelihoods. https://doi.org/10.1007/978-981-10-5269-9_17

Fatah, A., Rahmi, A., & Biantary, M. P. (2015). Tinjauan Potensi Tanaman Sagu (Metroxylon sagu Rottb) Sebagai Komoditas Unggulan di Kabupaten Paser. Media Sains, 8(Oktober), 158–167.

Figueroa-Lopez, K. J., Villabona-Ortíz, Á., & Ortega-Toro, R. (2024). Sustainable Starch-Based Films from Cereals and Tubers: A Comparative Study on Cherry Tomato Preservation. Polymers, 16(20), 1–15. https://doi.org/10.3390/polym16202913

Hamad, A., Indriani, N., & Ma’ruf, A. (2022). Production Of Lecithin As An Emulsifier From Vegetable Oil Using Water Degumming Process. Techno (Jurnal Fakultas Teknik, Universitas Muhammadiyah Purwokerto), 23(2), 139. https://doi.org/10.30595/techno.v23i2.15189

Haruna, N., Syamsuri, S., & Alang, H. (2022). Studi Etnobotani Ekonomi Tanaman Sagu (Methroxylon sagu) Pada Masyarakat Adat Luwu Di Kabupaten Luwu Sulawesi Selatan. Bio-Lectura : Jurnal Pendidikan Biologi, 9(2), 179–185. https://doi.org/10.31849/bl.v9i2.10812

Hazirah, N., Wan, B. C., Nafchi, A. M., & Huda, N. (2018). Tensile Strength, Elongation at Breaking Point and Surface Color of a Biodegradable Film Based on a Duck Feet Gelatin and Polyvinyl Alcohol Blend. Asia Pacific Journal of Sustainable Agriculture Food and Energy, 6(2), 16–21. Retrieved from https://journal.bakrie.ac.id/index.php/APJSAFE/article/view/1828/pdf

He, X., Yang, L., Zhou, L., Gunness, P., Hunt, W., Solah, V., & Sun, Q. (2024). Effect of lecithin on the complexation between different botanically sourced starches and lauric acid. International Journal of Biological Macromolecules, 268. https://doi.org/10.1016/j.ijbiomac.2024.131996.

Henao-Ardila, A., Quintanilla-Carvajal, M. X., & Moreno, F. L. (2024). Emulsification and stabilisation technologies used for the inclusion of lipophilic functional ingredients in food systems. Heliyon, 10(11). https://doi.org/10.1016/j.heliyon.2024.e32150.

Julyaningsih, A. H., Hamdani, I. M., & Binalopa, T. (2025). Development of sago-based edible plastic as primary packaging for instant food products Development of sago-based edible plastic as primary packaging for instant food products. IOP Conference Series: Earth and Environmental Science, 0–9. https://doi.org/10.1088/1755-1315/1471/1/012056

Julyaningsih, A. H., Latief, R., & Dirpan, A. (2020). The Making of Smart & Active Packaging on Tuna Fillet. IOP Conference Series: Earth and Environmental Science, 486(1). https://doi.org/10.1088/1755-1315/486/1/012053

Kühn, S., & van Franeker, J. A. (2020). Quantitative overview of marine debris ingested by marine megafauna. Marine Pollution Bulletin, 151(December), 110858. https://doi.org/10.1016/j.marpolbul.2019.110858

Liang, J., & Ludescher, R. D. (2015). Effects of glycerol on the molecular mobility and hydrogen bond network in starch matrix. Carbohydrate Polymers, 115, 401–407. https://doi.org/10.1016/j.carbpol.2014.08.105

Muhammad, M., Yanti, S., & Saputri, D. S. (2023). Pengaruh CMC (Carboxymethyl Cellulose) dan Lama Penumisan Terhadap Karakteristik Pasta Bawang Merah. Food and Agro-Industry Journal, 4(2), 1–12. https://doi.org/10.36761/fagi.v4i2.3789

Mukaila, T., Adeniyi, A., Bello, I., Sarker, N. C., Monono, E., & Hammed, A. (2024). Optimizing film mechanical and water contact angle properties via PLA/starch/lecithin concentrations. Cleaner and Circular Bioeconomy, 8(June), 100095. https://doi.org/10.1016/j.clcb.2024.100095

Oke, M., Jacob, J. K., & Paliyath, G. (2010). Effect of soy lecithin in enhancing fruit juice/sauce quality. Food Research International, 43(1), 232–240. https://doi.org/10.1016/j.foodres.2009.09.021

Putri, D. A., Setiawan, A., & Anggraini, P. D. (2018). Physical properties of edible sorgum starch film added with carboxymethyl cellulose. Journal of Physical Science, 29, 185–194. https://doi.org/10.21315/jps2018.29.s2.14

Santamaria-Echart, Fernandes, A., P., I., Silva, S. C., Rezende, S. C., Barreiro, G. C., Dias, M. M., & Filomena, M. (2021). New Trends in Natural Emulsifiers and Emulsion Technology for the Food Industry. In Food Additives. http://dx.doi.org/10.5772/intechopen.99892

Suryanto, H., Syukri, D., Faridah, A., Yanuhar, U., Binoj, J. S., Nusantara, F., Komarudin, & Ulhaq, U. A. (2025). Carboxymethyl cellulose films derived from pineapple waste: Fabrication and properties. Mechanical Engineering for Society and Industry, 5(1), 5–19. https://doi.org/10.31603/mesi.12789

Syafri, E., Jamaluddin, Wahono, S., Irwan, A., Asrofi, M., Sari, N. H., & Fudholi, A. (2019). Characterization and properties of cellulose microfibers from water hyacinth filled sago starch biocomposites. International Journal of Biological Macromolecules, 137, 119–125. https://doi.org/10.1016/j.ijbiomac.2019.06.174

Tavares, K. M., Campos, A. de, Luchesi, B. R., Resende, A. A., Oliveira, J. E. de, & Marconcini, J. M. (2020). Effect of carboxymethyl cellulose concentration on mechanical and water vapor barrier properties of corn starch films. Carbohydrate Polymers, 246(June), 116521. https://doi.org/10.1016/j.carbpol.2020.116521

Yusra, D. Z. (2019). Pengaruh Konsentrasi CMC (Carboxymethyl Cellulose) Terhadap Karakteristik Bioselulosa Berbasis Edible Film. Bandung: Universitas Pasundan.

Zhao, H., Zhou, F., Ma, C., Wei, Z., & Long, W. (2022). Bonding Mechanism and Process Characteristics of Special Polymers Applied in Pelletizing Binders. Coatings, 12(11). https://doi.org/10.3390/coatings12111618

Author Biographies

A. Hermina Julyaningsih, Hasauddin University

Author Origin : Indonesia

Andi Nur Faidah Rahman, Hasanuddin University

Author Origin : Indonesia

Febriana Intan Permata Hati, Hasanuddin University

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Julyaningsih, A. H., Rahman, A. N. F., & Hati, F. I. P. (2025). The Effect of Lecithin and Carboxymethyl Cellulose (CMC) Concentrations on the Physical Characteristics of Sago Starch-Based Edible Films. Jurnal Penelitian Pendidikan IPA, 11(10), 463–470. https://doi.org/10.29303/jppipa.v11i10.12665