Vol. 11 No. 11 (2025): November
Open Access
Peer Reviewed

Development of a Rapid Diagnostic Method for Simultaneous Detection of Streptococcus viridans in Cases of Heart Disease

Authors

Pestariati , Suhariyadi , Asryadin , Nilasari Indah Yuniati

DOI:

10.29303/jppipa.v11i11.12730

Published:

2025-11-30

Downloads

Abstract

Heart disease is a leading cause of death worldwide, with a complex pathophysiology often involving interactions between genetic factors, the environment, and pathogenic microorganisms. Streptococcus viridans is a clinically significant pathogenic bacterium associated with infections of the cardiovascular system, including infective endocarditis, pericarditis, and other complications. However, timely and accurate diagnosis of this bacterial infection in cases of acute heart disease is often challenging, requiring rapid and sensitive diagnostic methods. Currently, diagnostic methods for detecting Streptococcus viridans in cases of acute heart disease tend to be time-consuming; therefore, developing a rapid diagnostic method that can detect both bacteria simultaneously is crucial. The aim of this study is to develop a rapid and sensitive diagnostic method for detecting the presence of Streptococcus viridans in samples from patients with heart disease. The method used is the identification of specific genes, the design of primer sequences, and the design of probes using specific 16s rRNA genes using bioinformatics techniques. Based on the research results obtained primer pair sequences are: oligonucleotide primer forward 5’-GCGACGATACATAGCCGAC-3’; primer reverse is 3’- CGAGCCAGTCTGAAAGC-5’, while the probe sequence is 5’-GACTGAGACACGGCCCAGACTC-3’. Primer and probe pair quality tests showed very good primer and probe quality for amplification with a 120 bp amplification product. Suggestions in the research are that it is necessary to continue with qPCR optimization to determine the melting temperature which is then carried out sensitivity tests of primer pair sequences and specific 16s rRNA Streptococcus viridans gene probes.

Keywords:

Heart disease Primer and Probe Rapid Diagnostics Streptococcus viridans

References

Ahmed, S. H., Tolba, S., & Al Zawahry, Y. A. (2019). Evaluation of the role of bla genes in beta lactam and methicillin resistant Staphylococcus aureus. Egyptian Journal of Botany, 59(1), 29-38.

Asryadin, A., Yuniati, N. I., Khasanah, N. A. H., Aqwam, A., Khairunnisa, R., Endang, H. K., ... & Yuniaty, A. (2024). Bioinformatics Techniques for Developing Molecular Detection Methods for the HIV-1 Gag Gene. European Journal of Biomedical Research, 3(4), 1-4. https://doi.org/10.24018/ejbiomed.2024.3.4.97

Asryadin, A., Yuniati, N. I., Panjenengan, L. A. F., & Satriana, B. T. (2023). Resistance To Antiretroviral Therapy In People With HIV. Jurnal Penelitian Pendidikan IPA, 9(9), 7719-7730. https://doi.org/10.29303/jppipa.v9i9.5283

Asryadin, Khasanah, N. A. H., & Yuniati, N. I. (2023). Desain primer dan probe melalui pendekatan bioinformatika untuk deteksi gen gag HIV-1 menggunakan qRT-PCR. Prosiding Asosiasi Institusi Pendidikan Tinggi Teknologi Laboratorium Medik Indonesia, 2, 118-128.

Atifah, Y., & Achyar, A. (2022). Design of specific primer for methallothionein gene of tor fish (Tor tambra). Natural Science Journal Of Science and Technology, 11(2), 42-48. https://dx.doi.org/10.22487/25411969.2022.v11.i2.16216

Borah, N., Albarouki, E., & Schirawski, J. (2018). Comparative methods for molecular determination of host-specificity factors in plant-pathogenic fungi. International Journal of Molecular Sciences, 19(3), 863. https://doi.org/10.3390/ijms19030863

Briefs, A. M. C. (2014). PCR-the polymerase chain reaction. Anal Methods, 6(2), 333-6.

Burban, A., Słupik, D., Reda, A., Szczerba, E., Grabowski, M., & Kołodzińska, A. (2024). Novel diagnostic methods for infective endocarditis. International Journal of Molecular Sciences, 25(2), 1245. https://doi.org/10.3390/ijms25021245

Coiras, M. T., Aguilar, J. C., Garcia, M. L., Casas, I., & Pérez‐Breña, P. (2004). Simultaneous detection of fourteen respiratory viruses in clinical specimens by two multiplex reverse transcription nested‐PCR assays. Journal of medical virology, 72(3), 484-495. https://doi.org/10.1002/jmv.20008

Doern, C. D., & Carey-Ann, B. D. (2010). It's not easy being green: the viridans group streptococci, with a focus on pediatric clinical manifestations. Journal of clinical microbiology, 48(11), 3829-3835. https://doi.org/10.1128/jcm.01563-10

Flannagan, R. S., Heit, B., & Heinrichs, D. E. (2015). Antimicrobial mechanisms of macrophages and the immune evasion strategies of Staphylococcus aureus. Pathogens, 4(4), 826-868. https://doi.org/10.3390/pathogens4040826

Garnier, F., Gerbaud, G., Courvalin, P., & Galimand, M. (1997). Identification of clinically relevant viridans group streptococci to the species level by PCR. Journal of clinical microbiology, 35(9), 2337-2341. https://doi.org/10.1128/jcm.35.9.2337-2341.1997

Holm, W.V., Ghesquière, J., Boon, N., Verspecht, T., Bernaerts, K., Zayed, N., ... & Teughels, W. (2021). A viability quantitative PCR dilemma: are longer amplicons better?. Applied and environmental microbiology, 87(5), e02653-20. https://doi.org/10.1128/AEM.02653-20

Hung, J. H., & Weng, Z. (2016). Designing polymerase chain reaction primers using Primer3Plus. Cold Spring Harbor Protocols, 2016(9), pdb-prot093096. https://doi.org/10.1101/pdb.prot093096

Hyypiä*, T., Auvinen, P., & Maaronen, M. (1989). Polymerase chain reaction for human picornaviruses. Journal of General Virology, 70(12), 3261-3268. https://doi.org/10.1099/0022-1317-70-12-3261

Jernigan, J. A., Hatfield, K. M., Wolford, H., Nelson, R. E., Olubajo, B., Reddy, S. C., ... & Baggs, J. (2020). Multidrug-resistant bacterial infections in US hospitalized patients, 2012–2017. New England Journal of Medicine, 382(14), 1309-1319. https://doi.org/10.1056/NEJMoa1914433

Judelson, H. (2011). Guidelines for designing primers. Tersedia: https://oomyceteworld. net/protocols/primer% 20designing2. pdf [19 April 2018].

Kozina, V., Cappallo-Obermann, H., Gromoll, J., & Spiess, A. N. (2011). A one-step real-time multiplex PCR for screening Y-chromosomal microdeletions without downstream amplicon size analysis. PloS one, 6(8), e23174. https://doi.org/10.1371/journal.pone.0023174

Kryczka, K. E., Demkow, M., & Dzielińska, Z. (2024). Biomarkers in peripartum cardiomyopathy—what we know and what is still to be found. Biomolecules, 14(1), 103. https://doi.org/10.3390/biom14010103

Lorenz, T. C. (2012). Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. Journal of visualized experiments: JoVE, (63), 3998. https://doi.org/10.3791/3998

Maeda, Y., Goldsmit, C. E., Coulter, W. A., Mason, C., Dooley, J. S. G., Lowery, C. J., ... & Moore, J. E. (2011). Comparasion of five gene loci (rnpB, 16S rRNA, 16S-23S rRNA, sodA and dnaJ) to aid the molecular identification of viridans-group streptococci and pneumococci. British journal of biomedical science, 68(4), 190-196. https://doi.org/10.1080/09674845.2011.11730349

Menon, T., Naveenkumar, V., & MENON, T. (2023). Use of 16s rRNA Gene sequencing for the identification of viridans group Streptococci. Cureus, 15(10). https://doi.org/10.7759/cureus.47125

Muppala, T., Rajesh, D., Patil, P., & Rao, A. V. (2020). Correlation of Iron and Myeloperoxidase Levels in Ischemic Heart Disease. Asian J Pharm Clin Res, 13(9), 128-131. http://dx.doi.org/10.22159/ajpcr.2020.v13i9.38646

Murray, P. R., Rosenthal, K. S., & Pfaller, M. A. (2015). Medical Microbiology E-Book: Medical Microbiology E-Book. Elsevier Health Sciences.

Rihkanen, H., Carpén, O., Roivainen, M., Vaheri, A., & Pitkäranta, A. (2004). Rhinovirus in adenoid tissue. International journal of pediatric otorhinolaryngology, 68(7), 903-908. https://doi.org/10.1016/j.ijporl.2004.02.005

Rodríguez, A., Rodríguez, M., Córdoba, J. J., & Andrade, M. J. (2015). Design of primers and probes for quantitative real-time PCR methods. In PCR primer design (pp. 31-56). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4939-2365-6_3

Saraswati, H., Seprianto, S., & Wahyuni, F. D. (2019). Desain primer secara in silico untuk amplifikasi gen cryiii dari Bacillus thuringiensis Isolat Lokal. Indonesian Journal of Biotechnology and Biodiversity, 3(1), 33-38. https://doi.org/10.47007/ijobb.v3i1.37

Syamsidi, A., Aanisah, N., Fiqram, R., & Al Jultri, I. (2021). Primer design and analysis for detection of mecA gene. Journal of Tropical Pharmacy and Chemistry, 5(3), 245-253.

Willcox, M. D., Zhu, H., & Knox, K. W. (2001). Streptococcus australis sp. nov., a novel oral streptococcus. International journal of systematic and evolutionary microbiology, 51(4), 1277-1281. https://doi.org/10.1099/00207713-51-4-1277

Xing, J., Liu, Y., & Chen, T. (2018). Correlations of chemokine CXCL16 and TNF-α with coronary atherosclerotic heart disease. Experimental and Therapeutic Medicine, 15(1), 773-776. https://doi.org/10.3892/etm.2017.5450

Yang, Z., Yang, J., Yue, L., Shen, B., Wang, J., Miao, Y., ... & Hu, Y. (2023). Enhancement effects and mechanism studies of two bismuth-based materials assisted by DMSO and glycerol in GC-rich PCR. Molecules, 28(11), 4515. https://doi.org/10.3390/molecules28114515

Author Biographies

Pestariati, Poltekkes Ministry of Health Surabaya

Author Origin : Indonesia

Suhariyadi, Poltekkes Ministry of Health Surabaya

Author Origin : Indonesia

Asryadin, Badan Riset dan Inovasi daerah Kota Bima

Author Origin : Indonesia

Nilasari Indah Yuniati, Poltekkes Ministry of Health Surabaya

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Pestariati, P., Suhariyadi, S., Asryadin, A., & Yuniati, N. I. (2025). Development of a Rapid Diagnostic Method for Simultaneous Detection of Streptococcus viridans in Cases of Heart Disease. Jurnal Penelitian Pendidikan IPA, 11(11), 839–845. https://doi.org/10.29303/jppipa.v11i11.12730