Spatial Changes in the Fluvial Landscape of the Bone River and Socio-Economic Impacts through Geospatial Technology Integration (Landsat-GIS) in the Gorontalo Region

Authors

La Ode Juni Akbar , Bambang Djau , Agung Djaba , Chyntia Dwi Faradiba , Daud Yusuf

DOI:

10.29303/jppipa.v11i10.12731

Published:

2025-10-25

Downloads

Abstract

Abstract: Changes in river systems can significantly impact communities, particularly through property and infrastructure losses. This study investigates the fluvial landscape changes of the Bone River and their socio-economic implications in the Gorontalo region from a spatial perspective. The research employs multi-temporal Landsat satellite imagery from the Google Earth Engine platform to analyze environmental dynamics in the study area over the period 1995–2025. The imagery dataset includes Landsat 5 TM (May 5), Landsat 7 ETM+ (February 17), Landsat 8 OLI/TRS (October 19), and Landsat 9 (May 31). The results indicate notable changes in the river’s course. Evidence of erosion and sediment deposition was identified along the Bone River banks. The patterns reveal a tendency toward lateral migration of the river channel, horizontal shifts, and narrowing of downstream segments. Several natural cut-off points have formed, along with shifts in the main channel in the upstream and midstream segments during the 1995–2025 period. The lateral migration of the river channel reached up to 1.2 km northeastward (N60°E), primarily driven by anthropogenic activities such as traditional sand mining along the western banks and the conversion of riparian land into residential areas. From a socio-economic perspective, these river morphological changes pose potential threats to riverside infrastructure and may trigger land-use conflicts, particularly in areas with active sand mining operations.

 

Keywords: Google Earth Engine; Landsat Imagery; Geographic Information Systems; River flow; Socio-econom

Keywords:

Geographic Information Systems, Google Earth Engine, Landsat Imagery, River flow, Socio-econom

References

Akbar, L. O. J., Yusuf, D., & Kasim, M. (2019). Analisis Potensi Wisata Bahari Berbasis Sistem Informasi Geografis di Pantai Langala Provinsi Gorontalo. Jambura Geoscience Review, 1(1), 30. https://doi.org/10.34312/jgeosrev.v1i1.2036

Akhter, F., Mazzoleni, M., Brandimarte, L., (2021). Analysis of 220 Years of Floodplain Population Dynamics in the US at Different Spatial Scales. Water 13 (2), 141. https://www.mdpi.com/2073-4441/13/2/141.

Arthun, D., & Zaimes, G. N. (2020). Channel changes following human activity exclusion in the riparian areas of Bonita Creek, Arizona, USA. Landscape and Ecological Engineering, 16(3), 263–271. https://doi.org/10.1007/s11355-020-00416-9

Asgari, H. R., Bozorg-Haddad, O., Soltani, A., & Loáiciga, H. A. (2019). Optimization model for integrated river basin management with the hybrid WOAPSO algorithm. Journal of Hydro-Environment Research, 25(April), 61–74. https://doi.org/10.1016/j.jher.2019.07.002

Asner, G. P., Knapp, D. E., Martin, R. E., Tupayachi, R., Anderson, C. B., Mascaro, J., Sinca, F., Chadwick, K. D., Higgins, M., Farfan, W., Llactayo, W., & Silman, M. R. (2016). The forest canopy biogeochemistry of the Peruvian Amazon. In G. Goldstein & L. S. Santiago (Eds.), Tropical tree physiology: Adaptations and responses in a changing environment (pp. 261-274). Springer International Publishing. https://doi.org/10.1007/978-3-319-27422-5_12

Awaluddin, A. R., Maskur, N. F., Abdurrahman, H., & Munaja, R. (2025). Perubahan Morfologi Sungai Lariang: Analisis Spasiotemporal dengan Pendekatan Penginderaan Jauh. Jurnal Peweka Tadulako, 4(1), 60–71. https://doi.org/10.22487/peweka.v4i1.53

Batalla, R. J., Iroumé, A., Hernández, M., Llena, M., Mazzorana, B., & Vericat, D. (2018). Recent geomorphological evolution of a natural river channel in a Mediterranean Chilean basin. Geomorphology, 303, 322–337. https://doi.org/10.1016/j.geomorph.2017.12.006

Best, J., Darby, S.E., (2020). The Pace of Human-Induced Change in Large Rivers: Stresses, Resilience, and Vulnerability to Extreme Events. One Earth 2 (6), 510–514 https://doi.org/10.1016/j.oneear.2020.05.021

Bizzi, S., Demarchi, L., Grabowski, R. C., Weissteiner, C. J., & Van de Bund, W. (2016). The use of remote sensing to characterise hydromorphological properties of European rivers. Aquatic Sciences, 78(1), 57–70. https://doi.org/10.1007/s00027-015-0430-7

Bizzi, S., Piégay, H., Demarchi, L., Van de Bund, W., Weissteiner, C. J., & Gob, F. (2023). The role of vegetation in river bank stability: A review of process-based evidence. Earth-Science Reviews, 236, 104255. https://doi.org/10.1016/j.earscirev.2022.104255

Boothroyd, R. J., Williams, R. D., Hoey, T. B., Barrett, B., & Prasojo, O. A. (2021). Applications of Google Earth Engine in fluvial geomorphology for detecting river channel change. Wiley Interdisciplinary Reviews: Water, 8(1), 1–27. https://doi.org/10.1002/wat2.1496

Bravard, J.-P., Goichot, M., & Gaillot, S. (2013). Geography of Sand and Gravel Mining in the Lower Mekong River. EchoGéo, 26, 0–20. https://doi.org/10.4000/echogeo.13659

Camporeale, C., Perona, P., Porporato, A., & Ridolfi, L. (2005). On the long-term behavior of meandering rivers. Water Resources Research, 41(12), 1–13. https://doi.org/10.1029/2005WR004109

Chadwick, A. J., Lamb, M. P., & Ganti, V. (2020). Accelerated river avulsion frequency on lowland deltas due to sea-level rise. Proceedings of the National Academy of Sciences of the United States of America, 117(30), 17584–17590. https://doi.org/10.1073/pnas.1912351117

Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C., & Lazarus, E. D. (2014). Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nature Geoscience, 7(12), 899–903. https://doi.org/10.1038/ngeo2282

Dabojani, D., Mithun, D., & Kanak Kanti, K. (2014). Forum geografic. Studii și cercetări de geografie și protecția mediului River Change Detection and Bankline Erosion Recognition using Remote Sensing and GIS. XIII(1), 11–12. https://doi.org/10.5775/fg.2067-4635.2014.022.i

Deng, L., Zhang, G., Fan, Z., She, D., & Wu, Y. (2021). Response of soil moisture to land-use change and associated flash flood predictability: A case study in a small humid watershed. Journal of Hydrology, 603, 127076. https://doi.org/10.1016/j.jhydrol.2021.127076

Duru, U. (2017). The Role of Human Activities in Streambank Stability: Lower Sakarya River (NW Turkey). Journal of Geosciences and Geomatics, 5(3), 130–135. https://doi.org/10.12691/jgg-5-3-4

Finotello, A., D’Alpaos, A., Bogoni, M., Ghinassi, M., & Lanzoni, S. (2020). Remotely-sensed planform morphologies reveal fluvial and tidal nature of meandering channels. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-019-56992-w

Gearon, J. H. (2025). Anthropogenic forcing of fluvial geomorphology: A global synthesis of sand mining impacts and aggradation dynamics. Nature Geoscience, 18(2), 112-125. https://doi.org/10.1038/s41561-024-01522-9

Gradiyanto, F., Parmantoro, P. N., & Suharyanto. (2025). Impact of climate change on Kupang River flow and hydrological extremes in Greater Pekalongan, Indonesia. Water Science and Engineering, 18(1), 69–77. https://doi.org/10.1016/j.wse.2024.03.005

Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., Babu, S., Borrelli, P., Cheng, L., Crochetiere, H., Ehalt Macedo, H., Filgueiras, R., Goichot, M., Higgins, J., Hogan, Z., Lip, B., McClain, M.E., Meng, J., Mulligan, M., Zarfl, C., (2019). Mapping the world’s free-flowing rivers. Nature 569 (7755), 215–221. https://doi. org/10.1038/s41586-019-1111-9

Gupta, L.K., Pandey, M., Raj, P.A., Shukla, A.K., 2023. Fine sediment intrusion and its consequences for river ecosystems: a review. J. Hazard. Toxic, Radio. Waste 27 (1), 04022036. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000729

Gurnell, A., Corenblit, D., García de Jalón, D., González del Tánago, M., Grabowski, R. C., O'Hare, M. T., & Szewczyk, M. (2022). Vegetation and river channel dynamics. WIREs Water, 9(4), e1597. https://doi.org/10.1002/wat2.1597

Gurnell, A. M., Bertoldi, W., & Corenblit, D. (2012). Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth-Science Reviews, 111(1–2), 129–141. https://doi.org/10.1016/j.earscirev.2011.11.005

Gurnell, R.C., (2016). Hydrogeomorphology-ecology interactions in river systems. River Res. Appl. 32 (2), 139–141. https://doi.org/10.1002/rra.2974

Hackney, C. R., Darby, S. E., Parsons, D. R., Leyland, J., Best, J. L., Aalto, R., Nicholas, A. P., & Houseago, R. C. (2020). River bank instability from unsustainable sand mining in the lower Mekong River. Nature Sustainability, 3(3), 217–225. https://doi.org/10.1038/s41893-019-0455-3

Hackney, C. R., Vasilopoulos, G., Heng, S., Darbari, V., Walker, S., & Parsons, D. R. (2021). Sand mining far outpaces natural supply in a large alluvial river. Earth Surface Dynamics, 9(5), 1323–1334. https://doi.org/10.5194/esurf-9-1323-2021

John, C. K., Pu, J. H., Moruzzi, R., Hanmaiahgari, P. R., Pandey, M., Zang, S., & Jamei, M. (2024). Deposition and Microbial Analyses from Roof-Top Sediments Within Different Sanitation Environments. Topics in Catalysis, 67(15–16), 983–993. https://doi.org/10.1007/s11244-023-01856-x

Kleinhans, M. G. (2010). Sorting out river channel patterns. Progress in Physical Geography, 34(3), 287–326. https://doi.org/10.1177/0309133310365300

Koehnken, L., Rintoul, M. S., Goichot, M., Tickner, D., Loftus, A. C., & Acreman, M. C. (2020). Impacts of riverine sand mining on freshwater ecosystems: A review of the scientific evidence and guidance for future research. River Research and Applications, 36(3), 362–370. https://doi.org/10.1002/rra.3586

Koehnken, L., & Rintoul, M. (2018). Impacts of sand mining on ecosystem structure, process and biodiversity in rivers. WWF.

Kondolf, G. M. (2006). River restoration and meanders. Ecology and Society, 11(2). https://doi.org/10.5751/ES-01795-110242

Koohizadeh Dehkordi, A., Fatahi Nafchi, R., Samadi-Boroujeni, H., Khastar Boroujeni, M., & Ostad–Ali–Askari, K. (2024). Assessment of morphological changes of river bank erosion using landsat satellite time-series images. Ain Shams Engineering Journal, 15(3), 102455. https://doi.org/10.1016/j.asej.2023.102455

LAPAN. (2022). Laporan Pemantauan Degradasi Lahan dan Perubahan Tutupan Vegetasi Wilayah Hulu 2012-2022. Lembaga Penerbangan dan Antariksa Nasional.

Lahiri-Dutt, K. (2018). Extracting communities: A political ecology of rural-urban water conflicts in the sand river valleys of Sri Lanka. In The Water–Energy–Food Nexus (pp. 193-210)

Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3465–3472. https://doi.org/10.1073/pnas.1100480108

Legleiter, C.J., (2015). Downstream Effects of Recent Reservoir Development on the Morphodynamics of a Meandering Channel: Savery Creek, Wyoming, USA. River Res. Appl. 31 (10), 1328–1343. https://doi.org/10.1002/rra.2824

Li, D., Lu, D., Moran, E., da Silva, R.F.B., (2020). Examining water area changes accompanying dam construction in the Madeira River in the Brazilian Amazon. Water 12 (7), 1921. https://www.mdpi.com/2073-4441/12/7/1921

Nagel, G.W., de Moraes Novo, E.M.L., Martins, V.S., Campos-Silva, J.V., Barbosa, C.C.F., Bonnet, M.P., (2022). Impacts of meander migration on the Amazon riverine communities using Landsat time series and cloud computing. Sci. Total Environ. 806, 150449 https://doi.org/10.1016/j.scitotenv.2021.150449

Nilsson, C., & Berggren, K. (2000). Alterations of riparian ecosystems caused by river regulation. BioScience, *50*(9), 783–792. https://doi.org/10.1641/0006-3568(2000)050[0783:AORECB]2.0.CO;2

Palliyaguru, C., Basnayake, V., Makumbura, R. K., Gunathilake, M. B., Muttil, N., Wimalasiri, E. M., & Rathnayake, U. (2023). Evaluation of the Impact of Land Use Changes on Soil Erosion in the Tropical Maha Oya River Basin, Sri Lanka. Land, 12(1). https://doi.org/10.3390/land12010107

Peng, J., Liu, Z., Liu, Y., Hu, X., & Wang, A. (2020). A review of methods for estimating fractional vegetation cover based on remote sensing. Chinese Geographical Science, 30(1), 1–15. https://doi.org/10.1007/s11769-020-1100-9

Pu, J. H., Pandey, M., Li, J., Satyanaga, A., Kundu, S., & Hanmaiahgari, P. R. (2022). Editorial: The urban fluvial and hydro-environment system. Frontiers in Environmental Science, 10, 8–11. https://doi.org/10.3389/fenvs.2022.1075282

Puttinaovarat, S., Saeliw, A., Pruitikanee, S., Kongcharoen, J., Chai-Arayalert, S., Khaimook, K., & Horkaew, P. (2021). River classification and change detection from landsat images by using a river classification toolbox. IAES International Journal of Artificial Intelligence, 10(4), 948–959. https://doi.org/10.11591/IJAI.V10.I4.PP948-959

Puttinaovarat, S., Khaimook, K., & Horkaew, P. (2023). Land use and land cover classification from satellite images based on ensemble machine learning and crowdsourcing data verification. International Journal of Cartography, 11(1), 3–23. https://doi.org/10.1080/23729333.2023.2166252

Rinaldi, M., & Simon, A. (2018). Bed-level adjustment and bank erosion in the Arno River, Italy. In Gravel-bed rivers in the environment (pp. 381-400). CRC Press.

Shahrood, A. J., Menberu, M. W., Darabi, H., Rahmati, O., Rossi, P. M., Kløve, B., & Haghighi, A. T. (2020). RiMARS: An automated river morphodynamics analysis method based on remote sensing multispectral datasets. Science of the Total Environment, 719. https://doi.org/10.1016/j.scitotenv.2020.137336

Storey, J., Engineer, P. S., & Falls, S. (2014). Landsat 7 Scan Line Corrector-Off Gap-Filled Product Gap-Filled Product Development Process. International Journal of Remote Sensing, 2014, 1215. http://www.tandfonline.com/loi/tres20

Supriatna, Sukowati, K. A. D., & Sudiana, N. (2018). Analysis of cloud cover percentage over Indonesia based on satellite data. IOP Conference Series: Earth and Environmental Science, 149(1), 012045. https://doi.org/10.1088/1755-1315/149/1/012045

Sylvester, Z., Durkin, P., Covault, J. A., & Sharman, G. R. (2019). High curvatures drive river meandering. Geology, 47(10), e486–e486. https://doi.org/10.1130/G46838Y.1

Sylvester, Z., Durkin, P. R., Hubbard, S. M., & Mohrig, D. (2021). Autogenic translation and counter point bar deposition in meandering rivers. Bulletin of the Geological Society of America, 133(11–12), 2439–2456. https://doi.org/10.1130/B35829.1

Tellman, B., Sullivan, J.A., Kuhn, C., Kettner, A.J., Doyle, C.S., Brakenridge, G.R., Erickson, T.A., Slayback, D.A., (2021). Satellite imaging reveals increased proportion of population exposed to floods. Nature 596 (7870), 80–86. https://doi.org/10.1038/s41586-021-03695-w

Trigg, M. A., Wilkins, A., & Shaw, E. (2023). The effectiveness of riparian buffers in mitigating surface runoff and flash flooding: A large-scale experimental study. Journal of Environmental Management, 337, 117755. https://doi.org/10.1016/j.jenvman.2023.117755

Ulfah Utami, W., Dwi Wahjunie, E., & Darma Tarigan, S. (2020). Karakteristik Hidrologi dan Pengelolaannya dengan Model Hidrologi Soil and Water Assessment Tool Sub DAS Cisadane Hulu (Hydrological Characteristics and Management based on Hydrologic Modeling Soil and Water Assessment Tool in Cisadane Hulu Watershed). Jurnal Ilmu Pertanian Indonesia (JIPI), Juli, 25(3), 342–348. https://doi.org/10.18343/jipi.25.3.342

Valenza, J. M., Edmonds, D. A., Hwang, T., & Roy, S. (2020). Downstream changes in river avulsion style are related to channel morphology. Nature Communications, 11(1), 1–8. https://doi.org/10.1038/s41467-020-15859-9

Wallwork, J. T., Pu, J. H., Kundu, S., Hanmaiahgari, P. R., Pandey, M., Satyanaga, A., Khan, A., & Wood, A. (2022). Modelling Studies.

Walsh, S. J., Butler, D. R., & Malanson, G. P. (1998). An overview of scale, pattern, process relationships in geomorphology: A remote sensing and GIS perspective. Geomorphology, 21(3–4), 183–205. https://doi.org/10.1016/s0169-555x(97)00057-3

Wang, B., & Xu, Y. J. (2018). Dynamics of 30 large channel bars in the Lower Mississippi River in response to river engineering from 1985 to 2015. Geomorphology, 300, 31–44. https://doi.org/10.1016/j.geomorph.2017.09.041

Wang, S., & Mei, Y. (2016). Lateral erosion/accretion area and shrinkage rate of the Linhe reach braided channel of the Yellow River between 1977 and 2014. Journal of Geographical Sciences, 26(11), 1579–1592. https://doi.org/10.1007/s11442-016-1345-5

Weisscher, S. A. H., Shimizu, Y., & Kleinhans, M. G. (2019). Upstream perturbation and floodplain formation effects on chute-cutoff-dominated meandering river pattern and dynamics. Earth Surface Processes and Landforms, 44(11), 2156–2169. https://doi.org/10.1002/esp.4638

Widodo, S., Saharjo, B. H., & Boer, R. (2023). Impacts of land-use change on hydrological regime and flood vulnerability in a tropical watershed: A case study from Indonesia. Journal of Degraded and Mining Lands Management, 10(2), 4117-4128. https://doi.org/10.15243/jdmlm.2023.102.4117

Wishart, D., Warburton, J., & Bracken, L. (2008). Gravel extraction and planform change in a wandering gravel-bed river: The River Wear, Northern England. Geomorphology, 94(1–2), 131–152. https://doi.org/10.1016/j.geomorph.2007.05.003

Wohl, E., Scott, D. N., & Yochum, S. E. (2023). The natural river: The role of vegetation in river form and process. Geomorphology, 421, 108517. https://doi.org/10.1016/j.geomorph.2022.108517

Wohl, E., (2018). Rivers in the Anthropocene: The U.S. perspective, Geomorphology, https://doi.org/10.1016/j.geomorph.2018.12.001

Wohl, E. (2014). A legacy of absence: Wood removal in US rivers. Progress in Physical Geography, 38(5), 637–663. https://doi.org/10.1177/0309133314548091

Zaimes, G. N., Tufekcioglu, M., & Schultz, R. C. (2019). Riparian land-use impacts on stream bank and gully erosion in agricultural watersheds: What we have learned. Water (Switzerland), 11(7). https://doi.org/10.3390/w11071343

Zhang, Y., Zhao, W., Fu, L., Liu, Y., & He, H. (2022). The compounding effects of urbanization and climate change on flash flood risk in a developing city. Urban Climate, 45, 101258. https://doi.org/10.1016/j.uclim.2022.101258

Zhang, P., Imhoff, M. L., Wolfe, R. E., & Bounoua, L. (2017). Characterizing urban heat islands of global settlements using MODIS and nighttime lights products. Canadian Journal of Remote Sensing, 43(5), 448-470. https://doi.org/10.1080/07038992.2017.1344686

Zhang, W., Hu, B., Brown, G.S., (2020). Automatic Surface Water Mapping Using Polarimetric SAR Data for Long-Term Change Detection. Water 12 (3), 872. https://www.mdpi.com/2073-4441/12/3/872.

Zhang, D., Hu, Y., Liu, M. et al. Geographical Variation and Influencing Factors of Spartina alterniflora Expansion Rate in Coastal China. Chin. Geogr. Sci. 30, 127–141 (2020). https://doi.org/10.1007/s11769-020-1100-9

Zhou, W., Li, Z., Ji, S., Hua, C., & Fan, W. (2015). A new index model NDVI-MNDWI for water object extraction in hybrid area. Communications in Computer and Information Science, 482(2013), 513–519. https://doi.org/10.1007/978-3-662-45737-5_51

Zuo, L. qin, Lu, Y. jun, Liu, H. xiang, Ren, F. fang, & Sun, Y. yuan. (2020). Responses of river bed evolution to flow-sediment process changes after Three Gorges Project in middle Yangtze River: A case study of Yaojian reach. Water Science and Engineering, 13(2), 124–135. https://doi.org/10.1016/j.wse.2020.03.002

Zuo, L. qin, jun Lu, Y., xiang Liu, H., fang Ren, F., yuan Sun, Y., 2020. Responses of river bed evolution to flow-sediment process changes after Three Gorges Project in middle Yangtze River: a case study of Yaojian reach. Water Sci. Eng. 13 (2), 124–135. https://doi.org/10.1016/J.WSE.2020.03.002

Author Biographies

La Ode Juni Akbar, Universitas Bina Taruna Gorontalo

Bambang Djau, University of Bina Taruna Gorontalo

Agung Djaba, University of Bina Taruna Gorontalo

Chyntia Dwi Faradiba, Public Works and Spatial Planning Agency, Pohuwato Regency, Gorontalo, Indonesia

Daud Yusuf, University of Gorontalo State

Downloads

Download data is not yet available.

How to Cite

Akbar, L. O. J., Djau, B., Djaba, A., Faradiba, C. D., & Yusuf, D. (2025). Spatial Changes in the Fluvial Landscape of the Bone River and Socio-Economic Impacts through Geospatial Technology Integration (Landsat-GIS) in the Gorontalo Region. Jurnal Penelitian Pendidikan IPA, 11(10), 312–324. https://doi.org/10.29303/jppipa.v11i10.12731