Vol. 12 No. 1 (2026): In Progress
Open Access
Peer Reviewed

Investigation of Active Compounds in Vetiver Oil against Penicillin-Binding Protein 1 of Acinetobacter baumannii: A Bioinformatics Approach

Authors

Yulianto Ade Prasetya , Putri Setyawati , Mariana Wahjudi , Tjie Kok

DOI:

10.29303/jppipa.v12i1.12734

Published:

2026-01-25

Downloads

Abstract

Acinetobacter baumannii is responsible for various infections in humans and is well known for its ability to develop antibiotic resistance. Therefore, exploring natural compounds, such as those found in vetiver oil, is crucial. Vetiver oil contains numerous compounds, including sesquiterpenes and sesquiterpenols; however, their activity against A. baumannii has not been previously reported. This research aims to investigate the potential of vetiver oil compounds in inhibiting penicillin-binding protein 1 (PBP1) in Acinetobacter baumannii using a bioinformatics approach. The methodology involved obtaining the 3D structure of PBP1 from the Protein Data Bank (PDB), while vetiver oil compounds were retrieved from the PubMed database. The first screening was conducted using ADMET Lab 3.0 to assess drug-likeness parameters, absorption, distribution, metabolism, excretion, and toxicity. The best-screened compounds were further evaluated through molecular docking using the Proteins Plus webserver to determine the binding residues. The results showed that vetiver oil compounds, including nootkatone, khusimol, and vetivenic acid, formed hydrogen bonds and hydrophobic interactions. Nootkatone, khusimol, and vetivenic acid have potential as inhibitors of PBP1; however, further in vitro studies are required to directly assess their biological activity and effectiveness.

Keywords:

Acinetobacter baumanii Antibiotic resistance Bioinformatics Penicillin-binding protein 1 Vetiver oil

References

Amalia, N., Sukrasno, & Fidrianny, I. (2021). Isolation of Khusimol from the Root of Vetiver (Vetiveria zizanioides L. Nash) Grown in Samarang – Garut and the Study of its Profile after Harvesting. Letters in Applied NanoBioScience, 11(2), 3549–3559. https://doi.org/10.33263/LIANBS112.35493559

Bodea, I. M., Cătunescu, G. M., Pop, C. R., Fiț, N. I., David, A. P., Dudescu, M. C., Stănilă, A., Rotar, A. M., & Beteg, F. I. (2022). Antimicrobial Properties of Bacterial Cellulose Films Enriched with Bioactive Herbal Extracts Obtained by Microwave-Assisted Extraction. Polymers, 14(7), 1435. https://doi.org/10.3390/polym14071435

Boll, J. M., Crofts, A. A., Peters, K., Cattoir, V., Vollmer, W., Davies, B. W., & Trent, M. S. (2016). A penicillin-binding protein inhibits selection of colistin-resistant, lipooligosaccharide-deficient Acinetobacter baumannii. Proceedings of the National Academy of Sciences, 113(41). https://doi.org/10.1073/pnas.1611594113

Bugnon, M., Röhrig, U. F., Goullieux, M., Perez, M. A. S., Daina, A., Michielin, O., & Zoete, V. (2024). SwissDock 2024: Major enhancements for small-molecule docking with Attracting Cavities and AutoDock Vina. Nucleic Acids Research, 52(W1), W324–W332. https://doi.org/10.1093/nar/gkae300

Burley, S. K., Berman, H. M., Kleywegt, G. J., Markley, J. L., Nakamura, H., & Velankar, S. (2017). Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive. In Protein Crystallography (Vol. 1607, pp. 627–641). Springer New York. https://doi.org/10.1007/978-1-4939-7000-1_26

Chahal, K. K., Bhardwaj, U., Kaushal, S., & Sandhu, A. K. (2015). Chemical composition and biological properties of Chrysopogon zizanioides (L.) Roberty syn. Vetiveria zizanioides (L.) Nash- A Review. Retrieved from https://op.niscair.res.in/index.php/IJNPR/article/view/8856

David, A., Fărcaș, A., & Socaci, S. A. (2023). An overview of the chemical composition and bioactivities of Vetiveria zizanioides (L.) Nash essential oil. Trends in Food Science & Technology, 140, 104153. https://doi.org/10.1016/j.tifs.2023.104153

Dong, J., Wang, N.-N., Yao, Z.-J., Zhang, L., Cheng, Y., Ouyang, D., Lu, A.-P., & Cao, D.-S. (2018). ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. Journal of Cheminformatics, 10(1), 29. https://doi.org/10.1186/s13321-018-0283-x

Ferrari, I. V., Mario, M. D., Narducci, R., Bracco, A., & Patrizio, P. (2021). Open access in Silico Tools to predict the ADMET profiling for Substances of Bioactive compounds of Garlic (Allium sativum L.). https://doi.org/10.3390/molecules26092594

Gogoi, R., Sarma, N., Begum, T., Chanda, S. K., Lekhak, H., Sastry, G. N., & Lal, M. (2023). Agarwood (Aquilaria malaccensis L.) a quality fragrant and medicinally significant plant based essential oil with pharmacological potentials and genotoxicity. Industrial Crops and Products, 197, 116535. https://doi.org/10.1016/j.indcrop.2023.116535

Grahl, M. V. C., Alcará, A. M., Perin, A. P. A., Moro, C. F., Pinto, É. S. M., Feltes, B. C., Ghilardi, I. M., Rodrigues, F. V. F., Dorn, M., Da Costa, J. C., Norberto De Souza, O., & Ligabue-Braun, R. (2021). Evaluation of drug repositioning by molecular docking of pharmaceutical resources available in the Brazilian healthcare system against SARS-CoV-2. Informatics in Medicine Unlocked, 23, 100539. https://doi.org/10.1016/j.imu.2021.100539

Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Open Source Drug Discovery Consortium, & Raghava, G. P. S. (2013). In Silico Approach for Predicting Toxicity of Peptides and Proteins. PLoS ONE, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957

Hamidian, M., & Nigro, S. J. (2019). Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microbial Genomics, 5(10). https://doi.org/10.1099/mgen.0.000306

Han, X., & Parker, T. L. (2017). Anti-inflammatory activity of clove (Eugenia caryophyllata) essential oil in human dermal fibroblasts. Pharmaceutical Biology, 55(1), 1619–1622. https://doi.org/10.1080/13880209.2017.1314513

Harding, C. M., Hennon, S. W., & Feldman, M. F. (2018). Uncovering the mechanisms of Acinetobacter baumannii virulence. Nature Reviews Microbiology, 16(2), 91–102. https://doi.org/10.1038/nrmicro.2017.148

Isolation of Khusimol from the Root of Vetiver (Vetiveria zizanioides L. Nash) Grown in Samarang – Garut and the Study of its Profile after Harvesting. (2021). Letters in Applied NanoBioScience, 11(2), 3549–3559. https://doi.org/10.33263/LIANBS112.35493559

Jang, H., Kim, C. M., Hong, E., & Park, H. H. (2024). Fully closed conformation of penicillin-binding protein revealed by structure of PBP2 from Acinetobacter baumannii. Biochemical and Biophysical Research Communications, 729, 150368. https://doi.org/10.1016/j.bbrc.2024.150368

Khater, H. F., Ali, A. M., Abouelella, G. A., Marawan, M. A., Govindarajan, M., Murugan, K., Abbas, R. Z., Vaz, N. P., & Benelli, G. (2018). Toxicity and growth inhibition potential of vetiver, cinnamon, and lavender essential oils and their blends against larvae of the sheep blowfly, Lucilia sericata. International Journal of Dermatology, 57(4), 449–457. https://doi.org/10.1111/ijd.13828

Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2016). PubChem Substance and Compound databases. Nucleic Acids Research, 44(D1), D1202–D1213. https://doi.org/10.1093/nar/gkv951

Kyriakidis, I., Vasileiou, E., Pana, Z. D., & Tragiannidis, A. (2021). Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens, 10(3), 373. https://doi.org/10.3390/pathogens10030373

Lagunin, A. A., Goel, R. K., Gawande, D. Y., Pahwa, P., Gloriozova, T. A., Dmitriev, A. V., Ivanov, S. M., Rudik, A. V., Konova, V. I., Pogodin, P. V., Druzhilovsky, D. S., & Poroikov, V. V. (2014). Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: A critical review. Nat. Prod. Rep., 31(11), 1585–1611. https://doi.org/10.1039/C4NP00068D

Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. (2000). PASS: Prediction of activity spectra for biologically active substances. Bioinformatics, 16(8), 747–748. https://doi.org/10.1093/bioinformatics/16.8.747

Leonhardt, R.-H., & Berger, R. G. (2014). Nootkatone. In Biotechnology of Isoprenoids (Vol. 148, pp. 391–404). Springer International Publishing. https://doi.org/10.1007/10_2014_279

Li, X., Ren, J.-N., Fan, G., Zhang, L.-L., & Pan, S.-Y. (2021). Advances on (+)-nootkatone microbial biosynthesis and its related enzymes. Journal of Industrial Microbiology and Biotechnology, 48(7–8), kuab046. https://doi.org/10.1093/jimb/kuab046

Liu, Y., Grimm, M., Dai, W., Hou, M., Xiao, Z.-X., & Cao, Y. (2020). CB-Dock: A web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacologica Sinica, 41(1), 138–144. https://doi.org/10.1038/s41401-019-0228-6

Luo, Y., & Song, Y. (2021). Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities. International Journal of Molecular Sciences, 22(21), 11401. https://doi.org/10.3390/ijms222111401

Mahmoud, A., Afifi, M. M., El Shenawy, F., Salem, W., & Elesawy, B. H. (2021). Syzygium aromaticum Extracts as a Potential Antibacterial Inhibitors against Clinical Isolates of Acinetobacter baumannii: An In-Silico-Supported In-Vitro Study. Antibiotics, 10(9), 1062. https://doi.org/10.3390/antibiotics10091062

Mercurio, F. A., Scaloni, A., Caira, S., & Leone, M. (2019). The antimicrobial peptides casocidins I and II: Solution structural studies in water and different membrane-mimetic environments. Peptides, 114, 50–58. https://doi.org/10.1016/j.peptides.2018.09.004

Morris, F. C., Dexter, C., Kostoulias, X., Uddin, M. I., & Peleg, A. Y. (2019a). The Mechanisms of Disease Caused by Acinetobacter baumannii. Frontiers in Microbiology, 10, 1601. https://doi.org/10.3389/fmicb.2019.01601

Morris, F. C., Dexter, C., Kostoulias, X., Uddin, M. I., & Peleg, A. Y. (2019b). The Mechanisms of Disease Caused by Acinetobacter baumannii. Frontiers in Microbiology, 10, 1601. https://doi.org/10.3389/fmicb.2019.01601

Munakata, Y., Heuson, E., Daboudet, T., Deracinois, B., Duban, M., Hehn, A., Coutte, F., & Slezack-Deschaumes, S. (2022). Screening of Antimicrobial Activities and Lipopeptide Production of Endophytic Bacteria Isolated from Vetiver Roots. Microorganisms, 10(2), 209. https://doi.org/10.3390/microorganisms10020209

Oliveira, T. A. S., Vieira, T. M., Esperandim, V. R., Martins, C. H. G., Magalhães, L. G., Miranda, M. L. D., & Crotti, A. E. M. (2022). Antibacterial, Antiparasitic, and Cytotoxic Activities of Chemical Characterized Essential Oil of Chrysopogon zizanioides Roots. Pharmaceuticals, 15(8), 967. https://doi.org/10.3390/ph15080967

Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H., & Ferrin, T. E. (2021). UCSF CHIMERAX: Structure visualization for researchers, educators, and developers. Protein Science, 30(1), 70–82. https://doi.org/10.1002/pro.3943

Qin, R., Yang, S., Fu, B., Chen, Y., Zhou, M., Qi, Y., Xu, N., Wu, Q., Hua, Q., Wu, Y., & Liu, Z. (2024). Antibacterial activity and mechanism of the sesquiterpene δ-cadinene against Listeria monocytogenes. LWT, 203, 116388. https://doi.org/10.1016/j.lwt.2024.116388

Sauvage, E., & Terrak, M. (2016). Glycosyltransferases and Transpeptidases/Penicillin-Binding Proteins: Valuable Targets for New Antibacterials. Antibiotics, 5(1), 12. https://doi.org/10.3390/antibiotics5010012

Shahavi, M. H., Hosseini, M., Jahanshahi, M., Meyer, R. L., & Darzi, G. N. (2016). Clove oil nanoemulsion as an effective antibacterial agent: Taguchi optimization method. Desalination and Water Treatment, 57(39), 18379–18390. https://doi.org/10.1080/19443994.2015.1092893

Singh, N., Kumar, A., Gupta, V. K., & Sharma, B. (2018). Biochemical and Molecular Bases of Lead-Induced Toxicity in Mammalian Systems and Possible Mitigations. Chemical Research in Toxicology, 31(10), 1009–1021. https://doi.org/10.1021/acs.chemrestox.8b00193

Solanki, V., Tiwari, M., & Tiwari, V. (2023). Investigation of Peptidoglycan-Associated Lipoprotein of Acinetobacter baumannii and Its Interaction with Fibronectin To Find Its Therapeutic Potential. Infection and Immunity, 91(5), e00023-23. https://doi.org/10.1128/iai.00023-23

Tsioutis, C., Kritsotakis, E. I., Karageorgos, S. A., Stratakou, S., Psarologakis, C., Kokkini, S., & Gikas, A. (2016). Clinical epidemiology, treatment and prognostic factors of extensively drug-resistant Acinetobacter baumannii ventilator-associated pneumonia in critically ill patients. International Journal of Antimicrobial Agents, 48(5), 492–497. https://doi.org/10.1016/j.ijantimicag.2016.07.007

Veeraraghavan, B., Shin, E., Bakthavatchalam, Y. D., Manesh, A., Dubey, D., Tascini, C., Taracila, M. A., Hujer, A. M., Jacobs, M. R., & Bonomo, R. A. (2025). A microbiological and structural analysis of the interplay between sulbactam/durlobactam and imipenem against penicillin-binding proteins (PBPs) of Acinetobacter spp. Antimicrobial Agents and Chemotherapy, 69(4), e01627-24. https://doi.org/10.1128/aac.01627-24

Whiteway, C., Breine, A., Philippe, C., & Van Der Henst, C. (2022). Acinetobacter baumannii. Trends in Microbiology, 30(2), 199–200. https://doi.org/10.1016/j.tim.2021.11.008

Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255

Yang, X., Liu, Y., Gan, J., Xiao, Z.-X., & Cao, Y. (2022). FitDock: Protein–ligand docking by template fitting. Briefings in Bioinformatics, 23(3), 87. https://doi.org/10.1093/bib/bbac087

Author Biographies

Yulianto Ade Prasetya, University of Surabaya

Author Origin : Indonesia

Putri Setyawati, University of Surabaya

Author Origin : Indonesia

Mariana Wahjudi, University of Surabaya

Author Origin : Indonesia

Tjie Kok, University of Surabaya

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Prasetya, Y. A., Setyawati, P., Wahjudi, M., & Kok, T. (2026). Investigation of Active Compounds in Vetiver Oil against Penicillin-Binding Protein 1 of Acinetobacter baumannii: A Bioinformatics Approach. Jurnal Penelitian Pendidikan IPA, 12(1), 191–199. https://doi.org/10.29303/jppipa.v12i1.12734