Investigation of Active Compounds in Vetiver Oil against Penicillin-Binding Protein 1 of Acinetobacter baumannii: A Bioinformatics Approach
DOI:
10.29303/jppipa.v12i1.12734Published:
2026-01-25Downloads
Abstract
Acinetobacter baumannii is responsible for various infections in humans and is well known for its ability to develop antibiotic resistance. Therefore, exploring natural compounds, such as those found in vetiver oil, is crucial. Vetiver oil contains numerous compounds, including sesquiterpenes and sesquiterpenols; however, their activity against A. baumannii has not been previously reported. This research aims to investigate the potential of vetiver oil compounds in inhibiting penicillin-binding protein 1 (PBP1) in Acinetobacter baumannii using a bioinformatics approach. The methodology involved obtaining the 3D structure of PBP1 from the Protein Data Bank (PDB), while vetiver oil compounds were retrieved from the PubMed database. The first screening was conducted using ADMET Lab 3.0 to assess drug-likeness parameters, absorption, distribution, metabolism, excretion, and toxicity. The best-screened compounds were further evaluated through molecular docking using the Proteins Plus webserver to determine the binding residues. The results showed that vetiver oil compounds, including nootkatone, khusimol, and vetivenic acid, formed hydrogen bonds and hydrophobic interactions. Nootkatone, khusimol, and vetivenic acid have potential as inhibitors of PBP1; however, further in vitro studies are required to directly assess their biological activity and effectiveness.
Keywords:
Acinetobacter baumanii Antibiotic resistance Bioinformatics Penicillin-binding protein 1 Vetiver oilReferences
Amalia, N., Sukrasno, & Fidrianny, I. (2021). Isolation of Khusimol from the Root of Vetiver (Vetiveria zizanioides L. Nash) Grown in Samarang – Garut and the Study of its Profile after Harvesting. Letters in Applied NanoBioScience, 11(2), 3549–3559. https://doi.org/10.33263/LIANBS112.35493559
Bodea, I. M., Cătunescu, G. M., Pop, C. R., Fiț, N. I., David, A. P., Dudescu, M. C., Stănilă, A., Rotar, A. M., & Beteg, F. I. (2022). Antimicrobial Properties of Bacterial Cellulose Films Enriched with Bioactive Herbal Extracts Obtained by Microwave-Assisted Extraction. Polymers, 14(7), 1435. https://doi.org/10.3390/polym14071435
Boll, J. M., Crofts, A. A., Peters, K., Cattoir, V., Vollmer, W., Davies, B. W., & Trent, M. S. (2016). A penicillin-binding protein inhibits selection of colistin-resistant, lipooligosaccharide-deficient Acinetobacter baumannii. Proceedings of the National Academy of Sciences, 113(41). https://doi.org/10.1073/pnas.1611594113
Bugnon, M., Röhrig, U. F., Goullieux, M., Perez, M. A. S., Daina, A., Michielin, O., & Zoete, V. (2024). SwissDock 2024: Major enhancements for small-molecule docking with Attracting Cavities and AutoDock Vina. Nucleic Acids Research, 52(W1), W324–W332. https://doi.org/10.1093/nar/gkae300
Burley, S. K., Berman, H. M., Kleywegt, G. J., Markley, J. L., Nakamura, H., & Velankar, S. (2017). Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive. In Protein Crystallography (Vol. 1607, pp. 627–641). Springer New York. https://doi.org/10.1007/978-1-4939-7000-1_26
Chahal, K. K., Bhardwaj, U., Kaushal, S., & Sandhu, A. K. (2015). Chemical composition and biological properties of Chrysopogon zizanioides (L.) Roberty syn. Vetiveria zizanioides (L.) Nash- A Review. Retrieved from https://op.niscair.res.in/index.php/IJNPR/article/view/8856
David, A., Fărcaș, A., & Socaci, S. A. (2023). An overview of the chemical composition and bioactivities of Vetiveria zizanioides (L.) Nash essential oil. Trends in Food Science & Technology, 140, 104153. https://doi.org/10.1016/j.tifs.2023.104153
Dong, J., Wang, N.-N., Yao, Z.-J., Zhang, L., Cheng, Y., Ouyang, D., Lu, A.-P., & Cao, D.-S. (2018). ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. Journal of Cheminformatics, 10(1), 29. https://doi.org/10.1186/s13321-018-0283-x
Ferrari, I. V., Mario, M. D., Narducci, R., Bracco, A., & Patrizio, P. (2021). Open access in Silico Tools to predict the ADMET profiling for Substances of Bioactive compounds of Garlic (Allium sativum L.). https://doi.org/10.3390/molecules26092594
Gogoi, R., Sarma, N., Begum, T., Chanda, S. K., Lekhak, H., Sastry, G. N., & Lal, M. (2023). Agarwood (Aquilaria malaccensis L.) a quality fragrant and medicinally significant plant based essential oil with pharmacological potentials and genotoxicity. Industrial Crops and Products, 197, 116535. https://doi.org/10.1016/j.indcrop.2023.116535
Grahl, M. V. C., Alcará, A. M., Perin, A. P. A., Moro, C. F., Pinto, É. S. M., Feltes, B. C., Ghilardi, I. M., Rodrigues, F. V. F., Dorn, M., Da Costa, J. C., Norberto De Souza, O., & Ligabue-Braun, R. (2021). Evaluation of drug repositioning by molecular docking of pharmaceutical resources available in the Brazilian healthcare system against SARS-CoV-2. Informatics in Medicine Unlocked, 23, 100539. https://doi.org/10.1016/j.imu.2021.100539
Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Open Source Drug Discovery Consortium, & Raghava, G. P. S. (2013). In Silico Approach for Predicting Toxicity of Peptides and Proteins. PLoS ONE, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
Hamidian, M., & Nigro, S. J. (2019). Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microbial Genomics, 5(10). https://doi.org/10.1099/mgen.0.000306
Han, X., & Parker, T. L. (2017). Anti-inflammatory activity of clove (Eugenia caryophyllata) essential oil in human dermal fibroblasts. Pharmaceutical Biology, 55(1), 1619–1622. https://doi.org/10.1080/13880209.2017.1314513
Harding, C. M., Hennon, S. W., & Feldman, M. F. (2018). Uncovering the mechanisms of Acinetobacter baumannii virulence. Nature Reviews Microbiology, 16(2), 91–102. https://doi.org/10.1038/nrmicro.2017.148
Isolation of Khusimol from the Root of Vetiver (Vetiveria zizanioides L. Nash) Grown in Samarang – Garut and the Study of its Profile after Harvesting. (2021). Letters in Applied NanoBioScience, 11(2), 3549–3559. https://doi.org/10.33263/LIANBS112.35493559
Jang, H., Kim, C. M., Hong, E., & Park, H. H. (2024). Fully closed conformation of penicillin-binding protein revealed by structure of PBP2 from Acinetobacter baumannii. Biochemical and Biophysical Research Communications, 729, 150368. https://doi.org/10.1016/j.bbrc.2024.150368
Khater, H. F., Ali, A. M., Abouelella, G. A., Marawan, M. A., Govindarajan, M., Murugan, K., Abbas, R. Z., Vaz, N. P., & Benelli, G. (2018). Toxicity and growth inhibition potential of vetiver, cinnamon, and lavender essential oils and their blends against larvae of the sheep blowfly, Lucilia sericata. International Journal of Dermatology, 57(4), 449–457. https://doi.org/10.1111/ijd.13828
Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2016). PubChem Substance and Compound databases. Nucleic Acids Research, 44(D1), D1202–D1213. https://doi.org/10.1093/nar/gkv951
Kyriakidis, I., Vasileiou, E., Pana, Z. D., & Tragiannidis, A. (2021). Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens, 10(3), 373. https://doi.org/10.3390/pathogens10030373
Lagunin, A. A., Goel, R. K., Gawande, D. Y., Pahwa, P., Gloriozova, T. A., Dmitriev, A. V., Ivanov, S. M., Rudik, A. V., Konova, V. I., Pogodin, P. V., Druzhilovsky, D. S., & Poroikov, V. V. (2014). Chemo- and bioinformatics resources for in silico drug discovery from medicinal plants beyond their traditional use: A critical review. Nat. Prod. Rep., 31(11), 1585–1611. https://doi.org/10.1039/C4NP00068D
Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. (2000). PASS: Prediction of activity spectra for biologically active substances. Bioinformatics, 16(8), 747–748. https://doi.org/10.1093/bioinformatics/16.8.747
Leonhardt, R.-H., & Berger, R. G. (2014). Nootkatone. In Biotechnology of Isoprenoids (Vol. 148, pp. 391–404). Springer International Publishing. https://doi.org/10.1007/10_2014_279
Li, X., Ren, J.-N., Fan, G., Zhang, L.-L., & Pan, S.-Y. (2021). Advances on (+)-nootkatone microbial biosynthesis and its related enzymes. Journal of Industrial Microbiology and Biotechnology, 48(7–8), kuab046. https://doi.org/10.1093/jimb/kuab046
Liu, Y., Grimm, M., Dai, W., Hou, M., Xiao, Z.-X., & Cao, Y. (2020). CB-Dock: A web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacologica Sinica, 41(1), 138–144. https://doi.org/10.1038/s41401-019-0228-6
Luo, Y., & Song, Y. (2021). Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities. International Journal of Molecular Sciences, 22(21), 11401. https://doi.org/10.3390/ijms222111401
Mahmoud, A., Afifi, M. M., El Shenawy, F., Salem, W., & Elesawy, B. H. (2021). Syzygium aromaticum Extracts as a Potential Antibacterial Inhibitors against Clinical Isolates of Acinetobacter baumannii: An In-Silico-Supported In-Vitro Study. Antibiotics, 10(9), 1062. https://doi.org/10.3390/antibiotics10091062
Mercurio, F. A., Scaloni, A., Caira, S., & Leone, M. (2019). The antimicrobial peptides casocidins I and II: Solution structural studies in water and different membrane-mimetic environments. Peptides, 114, 50–58. https://doi.org/10.1016/j.peptides.2018.09.004
Morris, F. C., Dexter, C., Kostoulias, X., Uddin, M. I., & Peleg, A. Y. (2019a). The Mechanisms of Disease Caused by Acinetobacter baumannii. Frontiers in Microbiology, 10, 1601. https://doi.org/10.3389/fmicb.2019.01601
Morris, F. C., Dexter, C., Kostoulias, X., Uddin, M. I., & Peleg, A. Y. (2019b). The Mechanisms of Disease Caused by Acinetobacter baumannii. Frontiers in Microbiology, 10, 1601. https://doi.org/10.3389/fmicb.2019.01601
Munakata, Y., Heuson, E., Daboudet, T., Deracinois, B., Duban, M., Hehn, A., Coutte, F., & Slezack-Deschaumes, S. (2022). Screening of Antimicrobial Activities and Lipopeptide Production of Endophytic Bacteria Isolated from Vetiver Roots. Microorganisms, 10(2), 209. https://doi.org/10.3390/microorganisms10020209
Oliveira, T. A. S., Vieira, T. M., Esperandim, V. R., Martins, C. H. G., Magalhães, L. G., Miranda, M. L. D., & Crotti, A. E. M. (2022). Antibacterial, Antiparasitic, and Cytotoxic Activities of Chemical Characterized Essential Oil of Chrysopogon zizanioides Roots. Pharmaceuticals, 15(8), 967. https://doi.org/10.3390/ph15080967
Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H., & Ferrin, T. E. (2021). UCSF CHIMERAX: Structure visualization for researchers, educators, and developers. Protein Science, 30(1), 70–82. https://doi.org/10.1002/pro.3943
Qin, R., Yang, S., Fu, B., Chen, Y., Zhou, M., Qi, Y., Xu, N., Wu, Q., Hua, Q., Wu, Y., & Liu, Z. (2024). Antibacterial activity and mechanism of the sesquiterpene δ-cadinene against Listeria monocytogenes. LWT, 203, 116388. https://doi.org/10.1016/j.lwt.2024.116388
Sauvage, E., & Terrak, M. (2016). Glycosyltransferases and Transpeptidases/Penicillin-Binding Proteins: Valuable Targets for New Antibacterials. Antibiotics, 5(1), 12. https://doi.org/10.3390/antibiotics5010012
Shahavi, M. H., Hosseini, M., Jahanshahi, M., Meyer, R. L., & Darzi, G. N. (2016). Clove oil nanoemulsion as an effective antibacterial agent: Taguchi optimization method. Desalination and Water Treatment, 57(39), 18379–18390. https://doi.org/10.1080/19443994.2015.1092893
Singh, N., Kumar, A., Gupta, V. K., & Sharma, B. (2018). Biochemical and Molecular Bases of Lead-Induced Toxicity in Mammalian Systems and Possible Mitigations. Chemical Research in Toxicology, 31(10), 1009–1021. https://doi.org/10.1021/acs.chemrestox.8b00193
Solanki, V., Tiwari, M., & Tiwari, V. (2023). Investigation of Peptidoglycan-Associated Lipoprotein of Acinetobacter baumannii and Its Interaction with Fibronectin To Find Its Therapeutic Potential. Infection and Immunity, 91(5), e00023-23. https://doi.org/10.1128/iai.00023-23
Tsioutis, C., Kritsotakis, E. I., Karageorgos, S. A., Stratakou, S., Psarologakis, C., Kokkini, S., & Gikas, A. (2016). Clinical epidemiology, treatment and prognostic factors of extensively drug-resistant Acinetobacter baumannii ventilator-associated pneumonia in critically ill patients. International Journal of Antimicrobial Agents, 48(5), 492–497. https://doi.org/10.1016/j.ijantimicag.2016.07.007
Veeraraghavan, B., Shin, E., Bakthavatchalam, Y. D., Manesh, A., Dubey, D., Tascini, C., Taracila, M. A., Hujer, A. M., Jacobs, M. R., & Bonomo, R. A. (2025). A microbiological and structural analysis of the interplay between sulbactam/durlobactam and imipenem against penicillin-binding proteins (PBPs) of Acinetobacter spp. Antimicrobial Agents and Chemotherapy, 69(4), e01627-24. https://doi.org/10.1128/aac.01627-24
Whiteway, C., Breine, A., Philippe, C., & Van Der Henst, C. (2022). Acinetobacter baumannii. Trends in Microbiology, 30(2), 199–200. https://doi.org/10.1016/j.tim.2021.11.008
Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
Yang, X., Liu, Y., Gan, J., Xiao, Z.-X., & Cao, Y. (2022). FitDock: Protein–ligand docking by template fitting. Briefings in Bioinformatics, 23(3), 87. https://doi.org/10.1093/bib/bbac087
License
Copyright (c) 2026 Yulianto Ade Prasetya, Putri Setyawati, Mariana Wahjudi, Tjie Kok

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






