Thermal Image-Based Classification of Okra Maturity: A Comparative Study of CNN, SVM, and LSTM

Authors

Tedi Sumardi , Iqbal Robiyana , Roni Permana , Muhamad Agung Suhendra

DOI:

10.29303/jppipa.v11i11.12748

Published:

2025-11-25

Downloads

Abstract

Post-harvest quality assessment remains a major challenge in agriculture, particularly for okra (Abelmoschus esculentus), which deteriorates rapidly due to high moisture content. Traditional grading based on manual inspection often results in inconsistency and product damage. This study explores thermal imaging as a non-destructive alternative for okra maturity classification. A dataset of 501 thermal images was acquired under controlled conditions and analyzed using three machine learning models: Convolutional Neural Network (CNN), Support Vector Machine (SVM) with Histogram of Oriented Gradients (HOG) features, and Long Short-Term Memory (LSTM) network. Experimental results show that CNN achieved the highest accuracy (99.01%), outperforming SVM (95.05%) and LSTM (91.09%). Confusion matrix and ROC analyses confirmed CNN’s superiority in capturing spatial thermal patterns related to maturity stages. Compared with RGB or hyperspectral imaging reported in prior studies, thermal imaging integrated with AI provides a more robust, illumination-independent, and non-destructive solution. The findings demonstrate the potential of CNN-based thermal imaging systems for automated sorting of okra in agricultural supply chains. Future work will focus on larger datasets, multi-class maturity levels, and real-time implementation to enhance practical deployment in post-harvest management.

Keywords:

CNN, LSTM, Okra maturity, SVM, Thermal imaging

References

Abd-Elhameed, U., Heba, L. A., & Abd El-Rahman, A. A. (2022). Physical Properties Measurements of Okra Fruits Using Image Processing to Predict of Visual Maturity Index. Journal of Soil Sciences and Agricultural Engineering, 13(11), 381–386. https://doi.org/10.21608/jssae.2022.161347.1104

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53. https://doi.org/10.1186/s40537-021-00444-8

Bai, K., Zhou, Y., Cui, Z., Bao, W., Zhang, N., & Zhai, Y. (2022). HOG-SVM-Based Image Feature Classification Method for Sound Recognition of Power Equipments. Energies, 15(12), 4449. https://doi.org/10.3390/en15124449

Breland, D. S., Dayal, A., Jha, A., Yalavarthy, P. K., Pandey, O. J., & Cenkeramaddi, L. R. (2021). Robust Hand Gestures Recognition Using a Deep CNN and Thermal Images. IEEE Sensors Journal, 21(23), 26602–26614. https://doi.org/10.1109/JSEN.2021.3119977

Caesarendra, W., Lekson, S. U., & Agung, & M. (2019). Mental Tasks EEG Signal Classification Using Support Vector Machine. Journal of Infrastructure & Facility Asset Managemen, 1(1), 12. http://dx.doi.org/10.12962%2Fjifam.v1i1.5231

Çorbacıoğlu, Ş. K., & Aksel, G. (2023). Receiver operating characteristic curve analysis in diagnostic accuracy studies: A guide to interpreting the area under the curve value. Turkish Journal of Emergency Medicine, 23(4), 195–198. https://doi.org/10.4103/tjem.tjem_182_23

Elshewey, A. M., Shams, M. Y., Tarek, Z., Megahed, M., M. El-kenawy, E.-S., & A. El-dosuky, M. (2023). Weight Prediction Using the Hybrid Stacked-LSTM Food Selection Model. Computer Systems Science and Engineering, 46(1), 765–781. https://doi.org/10.32604/csse.2023.034324

FAO. (2020). The State of Food and Agriculture. https://doi.org/10.4060/cb1447en

Fekadu Gemede, H. (2015). Nutritional Quality and Health Benefits of “Okra” (Abelmoschus esculentus): A Review. International Journal of Nutrition and Food Sciences, 4(2), 208. https://doi.org/10.11648/j.ijnfs.20150402.22

Gao, Z., Shao, Y., Xuan, G., Wang, Y., Liu, Y., & Han, X. (2020). Real-time hyperspectral imaging for the in-field estimation of strawberry ripeness with deep learning. Artificial Intelligence in Agriculture, 4, 31–38. https://doi.org/10.1016/j.aiia.2020.04.003

Gozali, A. A. (2023). Power Station Engine Failure Early Warning System Using Thermal Camera. Jurnal Penelitian Pendidikan IPA, 9(8), 6590–6596. https://doi.org/10.29303/jppipa.v9i8.4598

Guo, S., Dai, R., Sun, H., & Nian, Q. (2023). pTS-LSTM: Temperature prediction for fused filament fabrication using thermal image time series. Journal of Manufacturing Processes, 106, 316–327. https://doi.org/10.1016/j.jmapro.2023.09.053

Hespeler, S. C., Nemati, H., & Dehghan-Niri, E. (2021). Non-destructive thermal imaging for object detection via advanced deep learning for robotic inspection and harvesting of chili peppers. Artificial Intelligence in Agriculture, 5, 102–117. https://doi.org/10.1016/j.aiia.2021.05.003

Heydarian, M., Doyle, T. E., & Samavi, R. (2022). MLCM: Multi-Label Confusion Matrix. IEEE Access, 10, 19083–19095. https://doi.org/10.1109/ACCESS.2022.3151048

Huu, P. N., & Phung Ngoc, T. (2021). Hand Gesture Recognition Algorithm Using SVM and HOG Model for Control of Robotic System. Journal of Robotics, 2021, 1–13. https://doi.org/10.1155/2021/3986497

Islami, F., Sumijan, & Defit, S. (2024). Customized Convolutional Neural Network for Glaucoma Detection in Retinal Fundus Images. Jurnal Penelitian Pendidikan IPA, 10(8), 4606–4613. https://doi.org/10.29303/jppipa.v10i8.7614

Koirala, A., Walsh, K. B., Wang, Z., & McCarthy, C. (2019). Deep learning – Method overview and review of use for fruit detection and yield estimation. Computers and Electronics in Agriculture, 162, 219–234. https://doi.org/10.1016/j.compag.2019.04.017

Lin, C.-L., & Fan, K.-C. (2004). Biometric Verification Using Thermal Images of Palm-Dorsa Vein Patterns. IEEE Transactions on Circuits and Systems for Video Technology, 14(2), 199–213. https://doi.org/10.1109/TCSVT.2003.821975

Lin, P., Yang, H., Cheng, S., Guo, F., Wang, L., & Lin, Y. (2023). An improved YOLOv5s method based bruises detection on apples using cold excitation thermal images. Postharvest Biology and Technology, 199, 112280. https://doi.org/10.1016/j.postharvbio.2023.112280

Malashin, I., Tynchenko, V., Gantimurov, A., Nelyub, V., & Borodulin, A. (2024). Applications of Long Short-Term Memory (LSTM) Networks in Polymeric Sciences: A Review. Polymers, 16(18), 2607. https://doi.org/10.3390/polym16182607

Miśkiewicz, J., & Witkowicz, P. (2025). Time Series Determinism Recognition by LSTM Model. Mathematics, 13(12), 2000. https://doi.org/10.3390/math13122000

Mokgalaboni, K., Lebelo, S. L., Modjadji, P., & Ghaffary, S. (2023). Okra ameliorates hyperglycaemia in pre-diabetic and type 2 diabetic patients: A systematic review and meta-analysis of the clinical evidence. Frontiers in Pharmacology, 14. https://doi.org/10.3389/fphar.2023.1132650

Murugesan, R., Mishra, E., & Krishnan, A. H. (2022). Forecasting agricultural commodities prices using deep learning-based models: basic LSTM, bi-LSTM, stacked LSTM, CNN LSTM, and convolutional LSTM. International Journal of Sustainable Agricultural Management and Informatics, 8(3), 242. https://doi.org/10.1504/IJSAMI.2022.125757

Narayanan, A., Kumar, R. D., RoselinKiruba, R., & Sharmila, T. S. (2021). Study and Analysis of Pedestrian Detection in Thermal Images Using YOLO and SVM. 2021 Sixth International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 431–434. https://doi.org/10.1109/WiSPNET51692.2021.9419443

Noor, A. Z. M., Gernowo, R., & Nurhayati, O. D. (2023). Data Augmentation for Hoax Detection through the Method of Convolutional Neural Network in Indonesian News. Jurnal Penelitian Pendidikan IPA, 9(7), 5078–5084. https://doi.org/10.29303/jppipa.v9i7.4214

Nurhasanah, Hamzah, A. H. P., & Harijati, S. (2023). Citra Landsat 8 on Environmental Spatial Analysis for Determining the Zone of Mangrove Distribution in Langkat District. Jurnal Penelitian Pendidikan IPA, 9(11), 10028–10032. https://doi.org/10.29303/jppipa.v9i11.3950

Pathmanaban, P., Gnanavel, B. K., & Anandan, S. S. (2023). Comprehensive guava fruit data set: Digital and thermal images for analysis and classification. Data in Brief, 50, 109486. https://doi.org/10.1016/j.dib.2023.109486

Rahmahwati, R., & Kirana, E. T. (2023). Implementation of C4.5 and K-Nearest Neighbor to Predict Palm Oil Fruit Production on Local Plantations. Jurnal Penelitian Pendidikan IPA, 9(9), 7454–7461. https://doi.org/10.29303/jppipa.v9i9.4498

Raikar, M. M., S M, M., Kuchanur, C., Girraddi, S., & Benagi, P. (2020). Classification and Grading of Okra-ladies finger using Deep Learning. Procedia Computer Science, 171, 2380–2389. https://doi.org/10.1016/j.procs.2020.04.258

Raju, V. B., Imtiaz, M. H., & Sazonov, E. (2023). Food Image Segmentation Using Multi-Modal Imaging Sensors with Color and Thermal Data. Sensors, 23(2), 560. https://doi.org/10.3390/s23020560

Rizki, S. D., & Defit, S. (2024). Texture and Flag Color Extraction in Backpropagation Neural Network Architecture. Jurnal Penelitian Pendidikan IPA, 10(5), 2191–2198. https://doi.org/10.29303/jppipa.v10i5.7146

Sari, M. W., Sitorus, S. P., Rohani, & Pane, R. (2025). Implementation of Convolutional Neural Network (CNN) Method in Determining the Level of Ripeness of Mango Fruit Based on Image. Jurnal Penelitian Pendidikan IPA, 11(5), 419–428. https://doi.org/10.29303/jppipa.v11i5.11436

Sasithradevi, A., Shoba, S., & Persiya, J. (2024). Thermal image dataset for okra maturity analysis. Data in Brief, 55, 110645. https://doi.org/10.1016/j.dib.2024.110645

Sathyanarayanan, S. (2024). Confusion Matrix-Based Performance Evaluation Metrics. African Journal of Biomedical Research, 4023–4031. https://doi.org/10.53555/AJBR.v27i4S.4345

Selvathi, D., & Suganya, K. (2019). Support Vector Machine Based Method for Automatic Detection of Diabetic Eye Disease using Thermal Images. 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT), 1–6. https://doi.org/10.1109/ICIICT1.2019.8741450

Sobayo, R., Wu, H.-H., Ray, R., & Qian, L. (2018). Integration of Convolutional Neural Network and Thermal Images into Soil Moisture Estimation. 2018 1st International Conference on Data Intelligence and Security (ICDIS), 207–210. https://doi.org/10.1109/ICDIS.2018.00041

Song, X., Liu, Y., Xue, L., Wang, J., Zhang, J., Wang, J., Jiang, L., & Cheng, Z. (2020). Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model. Journal of Petroleum Science and Engineering, 186, 106682. https://doi.org/10.1016/j.petrol.2019.106682

Suhendra, M. A., Sumardi, T., Robiyana, I., & Nurizati, N. (2025). EEG-Based Emotion Classification in Response to Humorous, Sad, and Fearful Video Stimuli Using LSTM Networks: A Comparative Study with Classical Machine Learning Models. Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics, 7(2), 427–437. https://doi.org/10.35882/ijeeemi.v7i2.100

Wilson, A. N., Gupta, K. A., Koduru, B. H., Kumar, A., Jha, A., & Cenkeramaddi, L. R. (2023). Recent Advances in Thermal Imaging and its Applications Using Machine Learning: A Review. IEEE Sensors Journal, 23(4), 3395–3407. https://doi.org/10.1109/JSEN.2023.3234335

Wu, M.-T. (2022). Confusion matrix and minimum cross-entropy metrics based motion recognition system in the classroom. Scientific Reports, 12(1), 3095. https://doi.org/10.1038/s41598-022-07137-z

Zeng, X., Miao, Y., Ubaid, S., Gao, X., & Zhuang., S. (2020). Detection and classification of bruises of pears based on thermal images. Postharvest Biology and Technology, 161, 111090. https://doi.org/10.1016/j.postharvbio.2019.111090

Zhou, L., Zhang, C., Liu, F., Qiu, Z., & He, Y. (2019). Application of Deep Learning in Food: A Review. Comprehensive Reviews in Food Science and Food Safety, 18(6), 1793–1811. https://doi.org/10.1111/1541-4337.12492

Author Biographies

Tedi Sumardi, Department of Physics, Faculty of Science, Universitas Mandiri, Subang, Indonesia

Iqbal Robiyana, Department of Physics, Faculty of Science, Universitas Mandiri, Subang, Indonesia

Roni Permana, Department of Primary Teacher Education, Faculty of Teacher Training and Education, Universitas Mandiri, Subang, Indonesia

Muhamad Agung Suhendra, Department of Physics, Faculty of Science, Universitas Mandiri, Subang, Indonesia

Downloads

Download data is not yet available.

How to Cite

Sumardi, T., Robiyana, I., Permana, R., & Suhendra, M. A. (2025). Thermal Image-Based Classification of Okra Maturity: A Comparative Study of CNN, SVM, and LSTM. Jurnal Penelitian Pendidikan IPA, 11(11), 582–589. https://doi.org/10.29303/jppipa.v11i11.12748