Thermal Image-Based Classification of Okra Maturity: A Comparative Study of CNN, SVM, and LSTM
DOI:
10.29303/jppipa.v11i11.12748Published:
2025-11-25Downloads
Abstract
Post-harvest quality assessment remains a major challenge in agriculture, particularly for okra (Abelmoschus esculentus), which deteriorates rapidly due to high moisture content. Traditional grading based on manual inspection often results in inconsistency and product damage. This study explores thermal imaging as a non-destructive alternative for okra maturity classification. A dataset of 501 thermal images was acquired under controlled conditions and analyzed using three machine learning models: Convolutional Neural Network (CNN), Support Vector Machine (SVM) with Histogram of Oriented Gradients (HOG) features, and Long Short-Term Memory (LSTM) network. Experimental results show that CNN achieved the highest accuracy (99.01%), outperforming SVM (95.05%) and LSTM (91.09%). Confusion matrix and ROC analyses confirmed CNN’s superiority in capturing spatial thermal patterns related to maturity stages. Compared with RGB or hyperspectral imaging reported in prior studies, thermal imaging integrated with AI provides a more robust, illumination-independent, and non-destructive solution. The findings demonstrate the potential of CNN-based thermal imaging systems for automated sorting of okra in agricultural supply chains. Future work will focus on larger datasets, multi-class maturity levels, and real-time implementation to enhance practical deployment in post-harvest management.
Keywords:
CNN, LSTM, Okra maturity, SVM, Thermal imagingReferences
Abd-Elhameed, U., Heba, L. A., & Abd El-Rahman, A. A. (2022). Physical Properties Measurements of Okra Fruits Using Image Processing to Predict of Visual Maturity Index. Journal of Soil Sciences and Agricultural Engineering, 13(11), 381–386. https://doi.org/10.21608/jssae.2022.161347.1104
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53. https://doi.org/10.1186/s40537-021-00444-8
Bai, K., Zhou, Y., Cui, Z., Bao, W., Zhang, N., & Zhai, Y. (2022). HOG-SVM-Based Image Feature Classification Method for Sound Recognition of Power Equipments. Energies, 15(12), 4449. https://doi.org/10.3390/en15124449
Breland, D. S., Dayal, A., Jha, A., Yalavarthy, P. K., Pandey, O. J., & Cenkeramaddi, L. R. (2021). Robust Hand Gestures Recognition Using a Deep CNN and Thermal Images. IEEE Sensors Journal, 21(23), 26602–26614. https://doi.org/10.1109/JSEN.2021.3119977
Caesarendra, W., Lekson, S. U., & Agung, & M. (2019). Mental Tasks EEG Signal Classification Using Support Vector Machine. Journal of Infrastructure & Facility Asset Managemen, 1(1), 12. http://dx.doi.org/10.12962%2Fjifam.v1i1.5231
Çorbacıoğlu, Ş. K., & Aksel, G. (2023). Receiver operating characteristic curve analysis in diagnostic accuracy studies: A guide to interpreting the area under the curve value. Turkish Journal of Emergency Medicine, 23(4), 195–198. https://doi.org/10.4103/tjem.tjem_182_23
Elshewey, A. M., Shams, M. Y., Tarek, Z., Megahed, M., M. El-kenawy, E.-S., & A. El-dosuky, M. (2023). Weight Prediction Using the Hybrid Stacked-LSTM Food Selection Model. Computer Systems Science and Engineering, 46(1), 765–781. https://doi.org/10.32604/csse.2023.034324
FAO. (2020). The State of Food and Agriculture. https://doi.org/10.4060/cb1447en
Fekadu Gemede, H. (2015). Nutritional Quality and Health Benefits of “Okra” (Abelmoschus esculentus): A Review. International Journal of Nutrition and Food Sciences, 4(2), 208. https://doi.org/10.11648/j.ijnfs.20150402.22
Gao, Z., Shao, Y., Xuan, G., Wang, Y., Liu, Y., & Han, X. (2020). Real-time hyperspectral imaging for the in-field estimation of strawberry ripeness with deep learning. Artificial Intelligence in Agriculture, 4, 31–38. https://doi.org/10.1016/j.aiia.2020.04.003
Gozali, A. A. (2023). Power Station Engine Failure Early Warning System Using Thermal Camera. Jurnal Penelitian Pendidikan IPA, 9(8), 6590–6596. https://doi.org/10.29303/jppipa.v9i8.4598
Guo, S., Dai, R., Sun, H., & Nian, Q. (2023). pTS-LSTM: Temperature prediction for fused filament fabrication using thermal image time series. Journal of Manufacturing Processes, 106, 316–327. https://doi.org/10.1016/j.jmapro.2023.09.053
Hespeler, S. C., Nemati, H., & Dehghan-Niri, E. (2021). Non-destructive thermal imaging for object detection via advanced deep learning for robotic inspection and harvesting of chili peppers. Artificial Intelligence in Agriculture, 5, 102–117. https://doi.org/10.1016/j.aiia.2021.05.003
Heydarian, M., Doyle, T. E., & Samavi, R. (2022). MLCM: Multi-Label Confusion Matrix. IEEE Access, 10, 19083–19095. https://doi.org/10.1109/ACCESS.2022.3151048
Huu, P. N., & Phung Ngoc, T. (2021). Hand Gesture Recognition Algorithm Using SVM and HOG Model for Control of Robotic System. Journal of Robotics, 2021, 1–13. https://doi.org/10.1155/2021/3986497
Islami, F., Sumijan, & Defit, S. (2024). Customized Convolutional Neural Network for Glaucoma Detection in Retinal Fundus Images. Jurnal Penelitian Pendidikan IPA, 10(8), 4606–4613. https://doi.org/10.29303/jppipa.v10i8.7614
Koirala, A., Walsh, K. B., Wang, Z., & McCarthy, C. (2019). Deep learning – Method overview and review of use for fruit detection and yield estimation. Computers and Electronics in Agriculture, 162, 219–234. https://doi.org/10.1016/j.compag.2019.04.017
Lin, C.-L., & Fan, K.-C. (2004). Biometric Verification Using Thermal Images of Palm-Dorsa Vein Patterns. IEEE Transactions on Circuits and Systems for Video Technology, 14(2), 199–213. https://doi.org/10.1109/TCSVT.2003.821975
Lin, P., Yang, H., Cheng, S., Guo, F., Wang, L., & Lin, Y. (2023). An improved YOLOv5s method based bruises detection on apples using cold excitation thermal images. Postharvest Biology and Technology, 199, 112280. https://doi.org/10.1016/j.postharvbio.2023.112280
Malashin, I., Tynchenko, V., Gantimurov, A., Nelyub, V., & Borodulin, A. (2024). Applications of Long Short-Term Memory (LSTM) Networks in Polymeric Sciences: A Review. Polymers, 16(18), 2607. https://doi.org/10.3390/polym16182607
Miśkiewicz, J., & Witkowicz, P. (2025). Time Series Determinism Recognition by LSTM Model. Mathematics, 13(12), 2000. https://doi.org/10.3390/math13122000
Mokgalaboni, K., Lebelo, S. L., Modjadji, P., & Ghaffary, S. (2023). Okra ameliorates hyperglycaemia in pre-diabetic and type 2 diabetic patients: A systematic review and meta-analysis of the clinical evidence. Frontiers in Pharmacology, 14. https://doi.org/10.3389/fphar.2023.1132650
Murugesan, R., Mishra, E., & Krishnan, A. H. (2022). Forecasting agricultural commodities prices using deep learning-based models: basic LSTM, bi-LSTM, stacked LSTM, CNN LSTM, and convolutional LSTM. International Journal of Sustainable Agricultural Management and Informatics, 8(3), 242. https://doi.org/10.1504/IJSAMI.2022.125757
Narayanan, A., Kumar, R. D., RoselinKiruba, R., & Sharmila, T. S. (2021). Study and Analysis of Pedestrian Detection in Thermal Images Using YOLO and SVM. 2021 Sixth International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 431–434. https://doi.org/10.1109/WiSPNET51692.2021.9419443
Noor, A. Z. M., Gernowo, R., & Nurhayati, O. D. (2023). Data Augmentation for Hoax Detection through the Method of Convolutional Neural Network in Indonesian News. Jurnal Penelitian Pendidikan IPA, 9(7), 5078–5084. https://doi.org/10.29303/jppipa.v9i7.4214
Nurhasanah, Hamzah, A. H. P., & Harijati, S. (2023). Citra Landsat 8 on Environmental Spatial Analysis for Determining the Zone of Mangrove Distribution in Langkat District. Jurnal Penelitian Pendidikan IPA, 9(11), 10028–10032. https://doi.org/10.29303/jppipa.v9i11.3950
Pathmanaban, P., Gnanavel, B. K., & Anandan, S. S. (2023). Comprehensive guava fruit data set: Digital and thermal images for analysis and classification. Data in Brief, 50, 109486. https://doi.org/10.1016/j.dib.2023.109486
Rahmahwati, R., & Kirana, E. T. (2023). Implementation of C4.5 and K-Nearest Neighbor to Predict Palm Oil Fruit Production on Local Plantations. Jurnal Penelitian Pendidikan IPA, 9(9), 7454–7461. https://doi.org/10.29303/jppipa.v9i9.4498
Raikar, M. M., S M, M., Kuchanur, C., Girraddi, S., & Benagi, P. (2020). Classification and Grading of Okra-ladies finger using Deep Learning. Procedia Computer Science, 171, 2380–2389. https://doi.org/10.1016/j.procs.2020.04.258
Raju, V. B., Imtiaz, M. H., & Sazonov, E. (2023). Food Image Segmentation Using Multi-Modal Imaging Sensors with Color and Thermal Data. Sensors, 23(2), 560. https://doi.org/10.3390/s23020560
Rizki, S. D., & Defit, S. (2024). Texture and Flag Color Extraction in Backpropagation Neural Network Architecture. Jurnal Penelitian Pendidikan IPA, 10(5), 2191–2198. https://doi.org/10.29303/jppipa.v10i5.7146
Sari, M. W., Sitorus, S. P., Rohani, & Pane, R. (2025). Implementation of Convolutional Neural Network (CNN) Method in Determining the Level of Ripeness of Mango Fruit Based on Image. Jurnal Penelitian Pendidikan IPA, 11(5), 419–428. https://doi.org/10.29303/jppipa.v11i5.11436
Sasithradevi, A., Shoba, S., & Persiya, J. (2024). Thermal image dataset for okra maturity analysis. Data in Brief, 55, 110645. https://doi.org/10.1016/j.dib.2024.110645
Sathyanarayanan, S. (2024). Confusion Matrix-Based Performance Evaluation Metrics. African Journal of Biomedical Research, 4023–4031. https://doi.org/10.53555/AJBR.v27i4S.4345
Selvathi, D., & Suganya, K. (2019). Support Vector Machine Based Method for Automatic Detection of Diabetic Eye Disease using Thermal Images. 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT), 1–6. https://doi.org/10.1109/ICIICT1.2019.8741450
Sobayo, R., Wu, H.-H., Ray, R., & Qian, L. (2018). Integration of Convolutional Neural Network and Thermal Images into Soil Moisture Estimation. 2018 1st International Conference on Data Intelligence and Security (ICDIS), 207–210. https://doi.org/10.1109/ICDIS.2018.00041
Song, X., Liu, Y., Xue, L., Wang, J., Zhang, J., Wang, J., Jiang, L., & Cheng, Z. (2020). Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model. Journal of Petroleum Science and Engineering, 186, 106682. https://doi.org/10.1016/j.petrol.2019.106682
Suhendra, M. A., Sumardi, T., Robiyana, I., & Nurizati, N. (2025). EEG-Based Emotion Classification in Response to Humorous, Sad, and Fearful Video Stimuli Using LSTM Networks: A Comparative Study with Classical Machine Learning Models. Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics, 7(2), 427–437. https://doi.org/10.35882/ijeeemi.v7i2.100
Wilson, A. N., Gupta, K. A., Koduru, B. H., Kumar, A., Jha, A., & Cenkeramaddi, L. R. (2023). Recent Advances in Thermal Imaging and its Applications Using Machine Learning: A Review. IEEE Sensors Journal, 23(4), 3395–3407. https://doi.org/10.1109/JSEN.2023.3234335
Wu, M.-T. (2022). Confusion matrix and minimum cross-entropy metrics based motion recognition system in the classroom. Scientific Reports, 12(1), 3095. https://doi.org/10.1038/s41598-022-07137-z
Zeng, X., Miao, Y., Ubaid, S., Gao, X., & Zhuang., S. (2020). Detection and classification of bruises of pears based on thermal images. Postharvest Biology and Technology, 161, 111090. https://doi.org/10.1016/j.postharvbio.2019.111090
Zhou, L., Zhang, C., Liu, F., Qiu, Z., & He, Y. (2019). Application of Deep Learning in Food: A Review. Comprehensive Reviews in Food Science and Food Safety, 18(6), 1793–1811. https://doi.org/10.1111/1541-4337.12492
License
Copyright (c) 2025 Tedi Sumardi, Iqbal Robiyana, Roni Permana, Muhamad Agung Suhendra

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






