Development of Fiber Bragg Grating as A High-Accuracy Temperature and Pressure Sensor

Authors

Dedi Irawan , Azhar , Dodi Dahnus , Sara Rahmawati , Sutoyo

DOI:

10.29303/jppipa.v11i11.12829

Published:

2025-11-25

Downloads

Abstract

The advancement of optical fiber technology has opened new opportunities in the development of high-accuracy sensors. This study focuses on the development of a Fiber Bragg Grating (FBG)-based sensor capable of simultaneously detecting temperature and pressure changes with high precision. FBGs are optical sensors that reflect specific wavelengths of light, which shift in response to external stimuli such as thermal expansion and mechanical strain. In this research, an FBG sensor system was designed, calibrated, and tested under controlled laboratory conditions to evaluate its sensitivity, linearity, and repeatability in detecting variations in temperature and pressure. The results show that the FBG sensor exhibits a high degree of accuracy and stability, with temperature sensitivity reaching up to 32 pm/°C and pressure sensitivity up to 32 pm/MPa. The dual-parameter sensing was achieved by using a configuration that separates the wavelength shifts induced by temperature and pressure through a compensation algorithm. This makes the proposed FBG sensor suitable for applications in harsh environments such as aerospace, biomedical, and industrial monitoring systems. The study concludes that FBG technology offers a promising platform for developing compact, reliable, and high-resolution sensing devices.

Keywords:

Dual-parameter sensing, Fiber Bragg grating, High accuracy, Optical fiber, Pressure sensor, Temperature sensor

References

Abang, A., & Abdullah, M. (2015). Development of FBG Temperature Sensor with Improved Sensitivity. International Journal of Optics.

Azhar, A., Ramadhan, K., & Irawan, D. (2022). Dual-Polarized PCF-SPR Sensor for Alcohol Detection at Low Temperature. Jurnal Penelitian Pendidikan IPA, 8(5), 2260–2265. https://doi.org/10.29303/jppipa.v8i5.2143

Daud, S., & Ali, J. (2018). Fibre Bragg Grating and No-Core Fibre Sensors. Springer.

Fadilla, F. D., & Saktioto, S. (2021). Aplikasi Sistem Sensor Fiber Bragg Grating untuk Pendeteksian Simulasi Denyut Jantung. Komunikasi Fisika Indonesia, 18(2), 151. https://doi.org/10.31258/jkfi.18.2.151-158

Fidanboylu, K., & Efendioglu, H. S. (2009). Fiber Optic Sensors and Their Applications. 5th International Advanced Technologies Symposium (IATS’09). May 13-15, 2009, Karabuk, Turkey. Retrieved from https://www.researchgate.net/profile/Anthony-Dandridge/publication/3552433

Gangwar, R. K., Kumari, S., Pathak, A. K., Gutlapalli, S. D., & Meena, M. C. (2023). Optical Fiber Based Temperature Sensors: A Review. Optics, 4(1), 171-197. https://doi.org/10.3390/opt4010013

Hill, K. O., & Meltz, G. (1997). Fiber Bragg Grating Technology Fundamentals and Overview. Journal of Lightwave Technology, 15(8), 1263–1276. https://doi.org/10.1109/50.618339

Indriani, M. (2013). Pengaruh Perubahan Suhu Terhadap Unjuk Kerja Fiber Bragg Grating (FBG) (Undergraduate Thesis). Universitas Pendidikan Indonesia. Retrieved from repository.upi.eduperpustakaan.upi.edu1.1–4

Irawan, D., Azhar, A., & Ramadhan, K. (2022a). High-Performance Compensation Dispersion with Apodization Chirped Fiber Bragg Grating for Fiber Communication System. Jurnal Penelitian Pendidikan IPA, 8(2), 992-999. https://doi.org/10.29303/jppipa.v8i2.1521

Irawan, D., Isty, M. F., Azhar, A., Islami, N., & Ramadhan, K. (2023). Design of Graphene Coated on FBG for High Temperature Sensor. Jurnal Penelitian Pendidikan IPA, 9(12), 10823–10831. https://doi.org/10.29303/jppipa.v9i12.5242

Irawan, D., Ramadhan, K., & Azhar, A. (2022b). Design of PCF-SPR for Early Detection of Skin Cancer Infected Cells. Jurnal Penelitian Pendidikan IPA, 8(5), 2293–2298. https://doi.org/10.29303/jppipa.v8i5.2120

Irawan, D., Saktioto, S., Azhar, A., Hanto, D., & Widiyatmoko, B. (2024). Investigation of Transmission and Reflection of Single Mode Fiber Bragg Grating. Jurnal Penelitian Pendidikan IPA, 10(6), 369–376. https://doi.org/10.29303/jppipa.v10i6.7209

Jasim, A. A., & Al-Shehri, S. M. (2018). Review on Fiber Bragg Grating Sensors. Journal of Sensors.

Kersey, A. D., Davis, M. A., Patrick, H. J., Leblanc, M., Koo, K. P., Askins, C. G., ... & Friebele, E. J. (1997). Fiber Grating Sensors. Journal of Lightwave Technology, 15(8), 1442–1463. https://doi.org/10.1109/50.618884

Khlaifi, H., Zrelli, A., & Ezzedine, T. (2021). Optical Fiber Sensors in Border Detection Application: Temperature, Strain and Pressure Distinguished Detection Using Fiber Bragg Grating and Fluorescence Intensity Ratio. Optik, 229, 166257. https://doi.org/10.1016/j.ijleo.2021.166257

Kustianto, I., Purnamaningsih, R. W., Rahardjo, S., Hamidah, M., & Firdaus, M. Y. (2023). Water Temperature Measurement Using Fiber Bragg Grating. Jurnal Penelitian Pendidikan IPA, 9(11), 9341–9345. https://doi.org/10.29303/jppipa.v9i11.3972

Majumder, M., Gangopadhyay, T. K., Chakraborty, A. K., Dasgupta, K., & Bhattacharya, D. K. (2008). Fibre Bragg Gratings in Structural Health Monitoring—Present Status and Applications. Sensors and Actuators A: Physical, 147(1), 150–164. https://doi.org/10.1016/j.sna.2008.06.014

Measures, R. M. (2001). Structural Monitoring with Fiber Optic Technology. Academic Press.

Meltz, G., Morey, W. W., & Glenn, W. H. (1989). Formation of Bragg Gratings in Optical Fibers by a Transverse Holographic Method. Optics Letters, 14(15), 823-825. https://doi.org/10.1364/OL.14.000823

Molardi, C., Paixão, T., Beisenova, A., Min, R., Antunes, P., Marques, C., Blanc, W., & Tosi, D. (2019). Fiber Bragg Grating (FBG) Sensors in a High-Scattering Optical Fiber Doped with MgO Nanoparticles for Polarization-Dependent Temperature Sensing. Applied Sciences, 9(15), 3107. https://doi.org/10.3390/app9153107

Murianti, D., Prakoso, T., & Sofwan, A. (2018). FBG (Fiber Bragg Grating) untuk DWDM (Dense Wavelength Division Multiplexing). Transient: Jurnal Ilmiah Teknik Elektro, 7(1), 77–82. https://doi.org/10.14710/transient.v7i1.77-82

Nasrulloh, N., Syahriar, A., & Prasetyono, R. N. (2021). Pengaruh Sensitivitas Suhu dengan Metode Couple-Mode Terhadap Fiber Bragg Grating Fiber Optik. Avitec, 3(2), 139. https://doi.org/10.28989/avitec.v3i2.926

Nuras, N. (2020). Kupas Tuntas Serat Kisi Bragg (Fiber Bragg Grating). Yogyakarta: Universitas Gadjah Mada.

Nuryadin, A. R. (2015). Perancangan Sensor Temperatur Tinggi Berbasis Fiber Bragg Grating (FBG) Tipe Bimetal (Thesis). Institut Teknologi Sepuluh Nopember. Retrieved from https://repository.its.ac.id/view/creators/Nuryadin=3AAndi_Rosman=3A=3A.html

Pang, B., Gu, Z., Ling, Q., Wu, W., & Zhou, Y. (2020). Simultaneous Measurement of Temperature and Surrounding Refractive Index by Superimposed Coated Long Period Fiber Grating and Fiber Bragg Grating Sensor Based on Mode Barrier Region. Optik, 220, 165136.

Permatasari, Y. (2015). Simulasi dan Analisis Optical Add Drop Multiplexer (OADM) Menggunakan Fiber Bragg Grating (FBG) pada Link Long Haul (Undergraduate Thesis). Universitas Telkom. Retrieved from https://repositori.telkomuniversity.ac.id/home/catalog/id/102560/slug/simulasi-dan-analisis-optical-add-drop-multiplexer-oadm-menggunakan-fiber-bragg-grating-fbg-pada-link-long-haul.html

Purbowaskito, W., & Handoyo, R. (2017). Perancangan Alat Penghitung Benih Ikan Berbasis Sensor Optik. Jurnal Rekayasa Mesin, 8(3). https://doi.org/10.21776/ub.jrm.2017.008.03.4

Putri, S. E., & Harmadi, H. (2017). Rancang Bangun Sistem Pengukuran Frekuensi Getaran Akustik pada Speaker Piezoelektrik Menggunakan Sensor Serat Optik. Jurnal Fisika Unand, 6(1), 47–52. https://doi.org/10.25077/jfu.6.1.47-52.2017

Ramadhan, K., Irawan, D., & Azhar, A. (2022). Optimum Design Sapphire-Fiber Bragg Grating for High-Temperature Sensing. Jurnal Penelitian Pendidikan IPA, 8(3), 1361–1367. https://doi.org/10.29303/jppipa.v8i3.1663

Rao, Y.-J. (1997). In-Fibre Bragg Grating Sensors. Measurement Science and Technology, 8(4), 355–375. https://doi.org/10.1088/0957-0233/8/4/002

Saptadi, A. H. (2014). Perbandingan Akurasi Pengukuran Suhu dan Kelembaban antara Sensor DHT11 dan DHT22. Jurnal Infotel, 6(2), 49–56. https://doi.org/10.20895/infotel.v6i2.16

Siddiq, N. A. (2020). Kupas Tuntas Serat Kisi Bragg (Fiber Bragg Grating). Retrieved from https://nuras.staff.ugm.ac.id/2020/04/22/fbg/

Tempsens. (n.d.). Fiber Bragg Grating Based Sensors. Retrieved from https://tempsens.com/blog/fiber-bragg-grating-based-sensors/#:~:text=thebasicoffbgtemperature,about 11.5 pm/°c

Urbach, T. U., & Wildian, W. (2019). Rancang Bangun Sistem Monitoring dan Kontrol Temperatur Pemanasan Zat Cair Menggunakan Sensor Inframerah MLX90614. Jurnal Fisika Unand, 8(3), 273–280. https://doi.org/10.25077/jfu.8.3.273-280.2019

Widasari, E. R., Pramono, S. H., & Purnomo, M. F. E. (2013). Analisis Penerapan Optical Add-Drop Multiplexer (OADM) Menggunakan Fiber Bragg Grating (FBG) pada Teknik Dense Wavelength Division Multiplexing (DWDM). Jurnal MahasiswaTEUB, 1(2). Retrieved from https://media.neliti.com/media/publications/115072-ID-none.pdf

Yassin, M. H., Hussein, M., Reza, F., & Michel, S. (2024). Discover Civil Engineering Fiber Bragg Grating (FBG)‑ Based Sensors : A Review of Technology and Recent Applications in Structural Health Monitoring (SHM) of Civil Engineering Structures. In Discover Civil Engineering. Springer International Publishing. https://doi.org/10.1007/s44290-024-00141-4

Zhou, K., Wei, L., & Cheng, S. (2008). Temperature Sensing Characteristics of Uniform and Chirped Fiber Bragg Gratings. Optics Communications, 281(6), 1570–1574.

Author Biographies

Dedi Irawan, FKIP Universitas Riau

Azhar, FKIP Universitas Riau

Dodi Dahnus, FKIP Universitas Riau

Sara Rahmawati, FKIP Universitas Riau

Sutoyo, UIN Suska Riau

Downloads

Download data is not yet available.

How to Cite

Irawan, D., Azhar, Dahnus, D., Rahmawati, S., & Sutoyo. (2025). Development of Fiber Bragg Grating as A High-Accuracy Temperature and Pressure Sensor. Jurnal Penelitian Pendidikan IPA, 11(11), 63–71. https://doi.org/10.29303/jppipa.v11i11.12829