Design Innovation of a Solar-Powered Seawater Purification Device to Support Science Learning in Coastal Areas
DOI:
10.29303/jppipa.v11i11.12897Published:
2025-11-25Downloads
Abstract
Coastal communities in Indonesia face limited access to clean water because water sources are dominated by seawater and the availability of fresh water is extremely limited. This problem creates a need for innovative and sustainable solutions that can be applied in everyday life and utilized in science learning. This study aims to design and test the feasibility of a solar panel–based seawater purifier as a contextual physics learning medium and a means of providing clean water for coastal communities. The research method used is Research and Development (R&D), conducted through the stages of needs analysis, design, prototyping, expert validation, and limited field trials. Data collected includes expert validation results, practicality assessments by teachers and students, and empirical measurements of water quality such as pH, TDS, salinity, specific gravity, ORP, and EC. Qualitative findings from the validators indicate that this tool has good functionality, is relevant for learning, is easy to use, and is safe to operate. The results show an average validity of 3.73 (very valid) and practicality of 3.60 from students and 3.86 from teachers (very practical category). Water quality tests showed a pH of 6.83, TDS of 124 ppm, which meets WHO standards (TDS < 500 ppm), salinity of 0.01%, specific gravity (SG) of 1.00, ORP of 224 mV, and EC of 0 µS/cm, indicating that the water is suitable for consumption. Thus, the aim of the research is to produce a valid, practical seawater purifier and provide a sustainable alternative solution for the clean water needs of coastal communities.
Keywords:
Coastal areas Design innovation Science learning Seawater purification Solar panelsReferences
Alaswad, S. O., Mansor, E. S., Abdallah, H., & Shaban, A. M. (2025). Modification of blend reverse osmosis membranes using ZrO2 for desalination process purposes. Applied Water Science, 15(1), 1–12. https://doi.org/10.1007/s13201-024-02329-6
Alrowais, R., Shahzad, M. W., Burhan, M., Bashir, M. T., Chen, Q., Xu, B. Bin, Kumja, M., Markides, C. N., & Ng, K. C. (2022). A thermally-driven seawater desalination system: Proof of concept and vision for future sustainability. Case Studies in Thermal Engineering, 35(May), 102084. https://doi.org/10.1016/j.csite.2022.102084
Alsakkaf, Z. A., Al-Dahbali, G. A. A., & Saeed, A. A. M. (2022). Study of a New Passive Solar Desalination Design With a Heat Recycling System. Electronic Journal of University of Aden for Basic and Applied Sciences, 3(3), 214–221. https://doi.org/10.47372/ejua-ba.2022.3.188
Bekliu, N., Marlensi Maubana, W., Lipikuni, H. F., & Boimau, Y. (2025). Analisis Kualitas Air Tanah Berdasarkan Parameter Fisika dan Kimia di Sekitar Pantai Lai-Lai Bisi Kopan (LLBK) Kota Kupang. Magnetic: Research Journal Of Physics and It’s Application, 5(2), 2775–8583. https://doi.org/10.59632/magnetic.v5i2.485
Chebil, S., Ruiz-García, A., Farhat, S., & Bali, M. (2024). Long-Term Performance Evaluation and Fouling Characterization of a Full-Scale Brackish Water Reverse Osmosis Desalination Plant. Water (Switzerland), 16(13). https://doi.org/10.3390/w16131892
Curto, D., Franzitta, V., & Guercio, A. (2021). A review of the water desalination technologies. Applied Sciences (Switzerland), 11(2), 1–36. https://doi.org/10.3390/app11020670
Dimitriou, E., Camacho-Espino, J., Anastasiou, A., & Papadakis, G. (2025). Experimental investigation of the performance of a seawater reverse osmosis desalination system operating under variable feed flowrate pressure and temperature conditions. Journal of Environmental Chemical Engineering, 13(2), 115778. https://doi.org/10.1016/j.jece.2025.115778
Doornbusch, G. J., Tedesco, M., Post, J. W., Borneman, Z., & Nijmeijer, K. (2019). Experimental investigation of multistage electrodialysis for seawater desalination. Desalination, 464(February), 105–114. https://doi.org/10.1016/j.desal.2019.04.025
Ernidawati, E., Sahal, M., Fauza, N., Syaflita, D., & Satria, D. (2021). Pengembangan Alat Pemurni Air Laut sebagai Media Pembelajaran Fisika SMA pada Materi Pemanasan Global. Journal of Natural Science and Integration, 4(2), 222. https://doi.org/10.24014/jnsi.v4i2.14529
Gaib, D., Arbie, A., & Setiawan, D. G. E. (2023). Rancang Bangun Alat Destilasi Air Laut Menggunakan Tenaga Matahari Sebagai Alternatif Penyediaan Air Bersih. Jurnal Fisika : Fisika Sains Dan Aplikasinya, 8(1), 37–43. https://doi.org/10.35508/fisa.v8i1.11822
Goosen, M., Mahmoudi, H., Alyousef, Y., & Ghaffour, N. (2023). Solar desalination: A review of recent developments in environmental, regulatory and economic issues. Solar Compass, 5(February). https://doi.org/10.1016/j.solcom.2023.100034
Hadi, S., Permadi, A., Maryudi, Syamsuddin, A., & Fatwa Zufar, A. (2024). Analysis water content of Seawater Desalination Technology by Using Multistage Distillation. Indonesian Journal of Chemical Engineering, 2(1), 22–28. https://doi.org/10.26555/ijce.v2i1.675
Hamdan, H., Saidy, M., Alameddine, I., & Al-Hindi, M. (2021). The feasibility of solar-powered small-scale brackish water desalination units in a coastal aquifer prone to saltwater intrusion: A comparison between electrodialysis reversal and reverse osmosis. Journal of Environmental Management, 290. https://doi.org/10.1016/j.jenvman.2021.112604
Ibrahim, M. M. (2022). Technical and Economic Comparison between Solar and Wind Energy Supplying Desalination System. Journal of Sustainable Development of Energy, Water and Environment Systems, 10(2). https://doi.org/10.13044/j.sdewes.d8.0382
Idrees, H., Ali, S., Sajid, M., Rashid, M., Khawaja, F. I., Ali, Z., & Anwar, M. N. (2023). Techno-Economic Analysis of Vacuum Membrane Distillation for Seawater Desalination. Membranes, 13(3). https://doi.org/10.3390/membranes13030339
Iswadi, M. S. L. (2016). Rancang bangun alat pemurni air laut menjadi air minum menggunakan sistem piramida air. Jurnal Sains Dan Pendidikan Fisika, 12(3), 300–310. https://doi.org/10.35580/jspf.v12i3.3057
Kaya, A., Evren Tok, M., & Koc, M. (2019). A levelized cost analysis for solar-energy-powered sea water desalination in the Emirate of Abu Dhabi. Sustainability (Switzerland), 11(6). https://doi.org/10.3390/su11061691
Kementerian Kesehatan. (2023). Permenkes No. 2 Tahun 2023. Kemenkes Republik Indonesia.
Madhuri, R. V. S., Said, Z., Ihsanullah, I., & Sathyamurthy, R. (2025). Solar energy-driven desalination: A renewable solution for climate change mitigation and advancing sustainable development goals. Desalination, 602. https://doi.org/10.1016/j.desal.2025.118575
Madupathi, M. M., Srishti, S., Fatima, S., & Sridhar, S. (2024). Sea and brackish water desalination through a novel PVDF-PTFE composite hydrophobic membrane by vacuum membrane distillation. Discover Chemical Engineering, 4(1). https://doi.org/10.1007/s43938-024-00044-x
Marx, O. P., & Gasser, I. (2025). Modelling , simulation and optimisation of seawater reverse osmosis – pressure-retarded osmosis ( SWRO – PRO ) hybrid units for seawater desalination (Vol. 123). Springer Netherlands.
McPeake, K., North, C., Townend, E., Dixon, K., Jeanes, L., Cooke, S., Kane, R., Selby, P., Lawler, M., & Nelson, D. (2025). Ensuring equitable and affordable access to clean water for people living with cancer in a rural and coastal setting. Journal of Cancer Policy, 44. https://doi.org/10.1016/j.jcpo.2025.100572
Mulyatiningsih, E. (2016). Pengembangan model pembelajaran. Retrieved from https://shorturl.at/uEl2o
Nabil, I., Dawood, M. M. K., Mansour, T. M., Shehata, A. I., & Abdalla, A. M. (2025). Improved productivity of seawater desalination systems through humidification–dehumidification process integrated with renewable and fogging technologies in a lowest cost. Applied Water Science, 15(6), 1–25. https://doi.org/10.1007/s13201-025-02446-w
Natawisastra, R., Bramawanto, R., Ma’muri, M., Alfaris, L., & Suhernalis, S. (2022). Rancang Bangun Alat Destilasi Air Laut yang Dilengkapi Pemanas Air Sederhana. Jurnal Kelautan Nasional, 17(2), 161. https://doi.org/10.15578/jkn.v17i2.11382
Nisa, A., Wijaya, I., & Sefriani, R. (2023). Uji Praktikalitas E-Modul Pembelajaran Project Based Learning Menggunakan Sigil Pada Mata Pelajaran Dasar-Dasar Kejuruan Siswa Kelas X Pengembangan Perangkat Lunak dan GIM (PPLG) di SMK N 1 Singkarak. PIJAR: Jurnal Pendidikan Dan Pengajaran, 2(1), 12–20. https://doi.org/10.58540/pijar.v2i1.427
Pan, Y., Li, E., Wang, Y., Liu, C., Shen, C., & Liu, X. (2022). Simple Design of a Porous Solar Evaporator for Salt-Free Desalination and Rapid Evaporation. Environmental Science and Technology, 56(16), 11818–11826. https://doi.org/10.1021/acs.est.2c03240
Philibert, M., Villacorte, L. O., Ekowati, Y., Abushaban, A., & Salinas-Rodriguez, S. G. (2024). Fouling and scaling in reverse osmosis desalination plants: A critical review of membrane autopsies, feedwater quality guidelines and assessment methods. Desalination, 592(October), 118188. https://doi.org/10.1016/j.desal.2024.118188
Prasetiyo, N. A., & Perwiraningtyas, P. (2017). Pengembangan Buku Ajar Berbasis Lingkungan Hidup pada Matakuliah Biologi di Universitas Tribhuwana Tunggadewi. Jurnal Pendidikan Biologi Indonesia, 3(1), 19–27. Retrieved from http://ejournal.umm.ac.id/index.php/jpbi
Purwanto, M., Kusuma, N. C., Sudrajat, M. A., Jaafar, J., Nasir, A. M., Aziz, M. H. A., Othman, M. H. D., Rahman, M. A., Raharjo, Y., & Widiastuti, N. (2021). Seawater desalination by modified membrane distillation: Effect of hydrophilic surface modifying macromolecules addition into pvdf hollow fiber membrane. Membranes, 11(12). https://doi.org/10.3390/membranes11120924
Rahmani, S., Murayama, T., & Nishikizawa, S. (2022). Socio-economic Impact of a Solar Water Pumping System in a Rural Community in Indonesia. Journal of Sustainable Development of Energy, Water and Environment Systems, 10(3). https://doi.org/10.13044/j.sdewes.d9.0403
Rezaei, L., Dehghani, M., Hassani, A. H., & Alipour, V. (2020). Seawater reverse osmosis membrane fouling causes in a full scale desalination plant; through the analysis of environmental issues: Raw water quality. Environmental Health Engineering and Management, 7(2), 119–126. https://doi.org/10.34172/EHEM.2020.14
Saeed AL-Ghamdi, A., Mohammed Mahmoud, A., & Bamardouf, K. (2022). Solar Desalination Methods and Economics (Literature Review). American Journal of Energy Engineering, 10(4), 92–102. https://doi.org/10.11648/j.ajee.20221004.12
Sembiring, E. T. J., & Safithri, A. (2023). Permasalahan Sanitasi di Pemukiman Pesisir Jakarta serta Rekomendasi Teknologi Pengelolaannya. Environmental Occupational Health and Safety Journal, 3(2), 199. https://doi.org/10.24853/eohjs.3.2.199-214
Shatat, M., & Riffat, S. B. (2014). Water desalination technologies utilizing conventional and renewable energy sources. International Journal of Low-Carbon Technologies, 9(1), 1–19. https://doi.org/10.1093/ijlct/cts025
Shouman, L. A., Afify, R. M., Fadel, D. A., & Esawy, M. H. (2024). Fouling effect on Reverse Osmosis (RO) membranes performance in desalination plant. Desalination and Water Treatment, 319(June), 100502. https://doi.org/10.1016/j.dwt.2024.100502
Sikder, S., Toha, M., Rahman, M. M., & Sikder, M. H. (2024). Efficiency of microbial desalination cells in treating wastewater, desalinating saltwater, and generating bioelectricity in Bangladesh. RSC Advances, 14(52), 38547–38559. https://doi.org/10.1039/d4ra06317a
Sugawara, E., & Nikaido, H. (2014). Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli. Antimicrobial Agents and Chemotherapy, 58(12), 7250–7257. https://doi.org/10.1128/AAC.03728-14
Wibowo, A. I., & Chang, K. C. (2020). Solar energy-based water treatment system applicable to the remote areas: Case of indonesia arsanto ishadi wibowo and keh-chin chang. Journal of Water Sanitation and Hygiene for Development, 10(2), 347–356. https://doi.org/10.2166/washdev.2020.003
Widjonarko, W., Aditya Rahardi, G., Rudiyanto, B., Ishamul Ayady Akma, A., & Ahmed Mohammed Ate, A. (2023). Solar-powered seawater desalination: A contribution to provide energy-efficient clean water. Borobudur Engineering Review, 3(1), 25–38. https://doi.org/10.31603/benr.9042
Wigati, R., Kulsum, K., & Bethary, R. T. (2018). Pemberdayaan Kawasan Pesisir Utara Banten Melalui Kelompok Usaha Bersama Berbasis Kearifan Lokal. Jurnal Pengabdian Dinamika, 1–9. Retrieved from http://jurnal.untirta.ac.id/index.php/Dinamika/article/view/8744
Wu, S. L., Chen, H., Wang, H. L., Chen, X., Yang, H. C., & Darling, S. B. (2021). Solar-driven evaporators for water treatment: Challenges and opportunities. Environmental Science: Water Research and Technology, 7(1), 24–39. https://doi.org/10.1039/d0ew00725k
Yoshi, L. A., & Widiasa, I. N. (2017). Studi Tekno Ekonomi Desalinasi Air Laut Skala Kecil Dengan Sistem Reverse Osmosis. Reaktor, 16(4), 218. https://doi.org/10.14710/reaktor.16.4.218-225
Yosry, N., Elgendy, E., Mostafa, A., & Fatouh, M. (2024). Hybrid air conditioning and seawater desalination system assisted by solar energy: thermoeconomic investigation and optimization. Journal of Engineering and Applied Science, 71(1), 1–19. https://doi.org/10.1186/s44147-024-00480-0
License
Copyright (c) 2025 Mitri Irianti, Ernidawati, Wilda Novianti, Zuhdi Ma’ruf, Zulhelmi, Naila Fauza, Idris, Abdul Hamid Sinaga, Rahmi Hidayah, Dhuha Fatihul Burhan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






