The ANFIS Model Approach in Classifying the Characteristics of Children with Special Needs at SLB in Southwest Papua
DOI:
10.29303/jppipa.v11i10.12978Published:
2025-10-25Downloads
Abstract
Special Elementary Education (SDLB) has a strategic role in providing equal access to education for Children with Special Needs (ABK). Observations at one of the Special Needs schools (SLB) in Southwest Papua show that the initial assessment process of ABK characteristics based on age, IQ, and motor skills has not been effective. This study aims to develop a system based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) model to assist the initial classification process of ABK characteristics and support initial assessments at school. The ANFIS model is used to study the nonlinear relationship between input variables and classification results. Testing is carried out using validated data to assess the level of accuracy and consistency of the model. The results show that the ANFIS model-based system has an accuracy level of 85.7% with stable predictive capabilities on most of the test data. These findings show that the integration of ANFIS into a web-based system can be an effective tool for teachers in conducting initial assessments, so that the process of identifying ABK characteristics can be carried out more quickly, objectively, and efficiently.
Keywords:
ANFIS, ABK, Characteristics of Children, Classifying, SLBReferences
’Aini, T. N., & Ratnaningrum, I. (2025). Development of ULTAGRAM Media Based on Quizwhizzer in an Effort to Increase Interest and Learning Outcomes. Jurnal Penelitian Pendidikan IPA, 11(4), 880–888. https://doi.org/10.29303/jppipa.v11i4.10996
A, M. F. A., & Iksan, N. (2025). Model Anfis Dan Mlr Untuk Memprediksi Keausan Mata Bor Pada Mesin Cnc Drilling Dengan Input Cutting Speed Dan Feeding Rate.bookchapter teknik elektro, 1, 120–148. https://doi.org/10.15294/bte.v1i1.372
Adnan Ikram, R. M., Jaafari, A., Milan, S. G., Kisi, O., Heddam, S., & Zounemat-Kermani, M. (2022). Hybridized Adaptive Neuro-Fuzzy Inference System with Metaheuristic Algorithms for Modeling Monthly Pan Evaporation. Water (Switzerland),14(21). https://doi.org/10.3390/w14213549
Ahmadi, N., & Moradinia, S. F. (2024). An approach for flood flow prediction utilizing new hybrids of ANFIS with several optimization techniques: a case study. Hydrology Research, 55(5), 560–575. https://doi.org/10.2166/nh.2024.191
Ahmadiham, A. A., Leluni, E. R. D., Priskila, R., & Pranatawijaya, V. H. (2020). Sistem Pakar Diagnosa Penyakit Telinga Berbasis Web Menggunakan Forward Chaining. Jurnal Inovasi Informatika Universitas Pradita, 8(2), 45–54. Retrieved from https://ejournal.itn.ac.id/index.php/jati/article/view/9692
Aiza, N., Nrartha, I. M. A., Ginarsa, I. M., Muljono, A. B., Zainuddin, A., & Sultan, S. (2025). Implementasi Adaptive Neuro-Fuzzy Inference System untuk Prediksi Beban Listrik Jangka Pendek di Gardu Induk 150 kV Tanjung. Jurnal Fokus Elektroda : Energi Listrik, Telekomunikasi, Komputer, Elektronika Dan Kendali), 10(2), 35–40. https://doi.org/10.33772/jfe.v10i2.1015
Akbar, U., Aziz, M. A., Setiawati, D., & Rohmadi, Y. E. (2025). Vulnerability Assessment of Vehicle Keyless Entry Systems Using the PTES Methodology. Jurnal Penelitian Pendidikan IPA, 11(8), 901–909. https://doi.org/10.29303/jppipa.v11i8.11887
Al Sudani, Z. A., & Salem, G. S. A. (2022). Evaporation Rate Prediction Using Advanced Machine Learning Models: A Comparative Study. Advances in Meteorology, 2022. https://doi.org/10.1155/2022/1433835
Alam, T. H. I., Fathurrahman, M., Ermin, E., Miswar, N., & Muntarif, M. W. (2024). Analisa Dan Redesign Ux Pada Website Online Course Jasgo Academy Menggunakan Metode Design Sprint Dan Usability Testing. Insect (Informatics and Security): Jurnal Teknik Informatika, 10(1), 1–10. https://doi.org/10.33506/insect.v10i1.3488
Almunawar, D., Anto, D. R., Alfitra, M. D., Washfil Hasin, M. D., Abu Jami’in, M., Adhitya, R. Y., Nugraha, A. T., Riananda, D. P., Ahmad Putra, Z. M., Adiatmoko, M. F., & Munadhif, I. (2024). Perancangan Sistem Pendukung Keputusan Mesin e-Fill Berbasis ANFIS. Journal of Computer, Electronic, and Telecommunication, 5(1), 1–12. https://doi.org/10.52435/complete.v5i1.399
Arifuddin, D., Kusrini, K., & Kusnawi, K. (2025). Perbandingan Performansi Algoritma Multiple Linear Regression dan Multi Layer Perceptron Neural Network dalam Memprediksi Penjualan Obat. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 5(2), 722–737. https://doi.org/10.57152/malcom.v5i2.1952
Bactiar, F. A. P., Aenika, U., Putri, J. N. A., Masfia, I., & Fahmi, Z. (2024). Keterampilan Bersosialisasi Siswa Autis Di Sekolah Inklusi Sd Suryo Bimo Kresno Kota Semarang. JKIP Jurnal Kajian Ilmu Pendidikan, 4(2), 589–600. https://doi.org/10.55583/jkip.v4i2.890
Bazrafshan, O., Ehteram, M., Dashti Latif, S., Feng Huang, Y., Yenn Teo, F., Najah Ahmed, A., & El-Shafie, A. (2022). Predicting crop yields using a new robust Bayesian averaging model based on multiple hybrid ANFIS and MLP models: Predicting crop yields using a new robust Bayesian averaging model. Ain Shams Engineering Journal, 13(5),1-21. https://doi.org/10.1016/j.asej.2022.101724
Buhungo, R. J., Hasan, I. K., & Nurwan, N. (2024). Penerapan Hybrid Metode ARFIMA-ANN Menggunakan Algoritma Backpropagation pada Peramalan Indeks Harga Saham Gabungan. Euler : Jurnal Ilmiah Matematika, Sains Dan Teknologi, 12(2), 200–205. https://doi.org/10.37905/euler.v12i2.28474
Ermin Ermin, R. S. (2023). Pemanfatan Qr-Code Vaksin Covid-19 untuk Absensi Menggunakan Metode Extreme Programming. Jurnal Antivirus, 17(2), 193–202. https://doi.org/10.35457/antivirus.v17i2.3217
Ermin, N. R. M. (2023). Penerapan Metode Certainty Factor untuk Mendiagnosa Penyakit Pneumania Dengan Menggunakan Bahasa Pemrograman Python. Jutisi (Jurnal Illmih Teknik Informatika Dan Sistem Informasi), 12(2), 884–891. https://doi.org/10.33506/insect.v7i2.1818
Esmaili, M., Aliniaeifard, S., Mashal, M., Vakilian, K. A., Ghorbanzadeh, P., Azadegan, B., Seif, M., & Didaran, F. (2021). Assessment of adaptive neuro-fuzzy inference system (ANFIS) to predict production and water productivity of lettuce in response to different light intensities and CO2 concentrations. Agricultural Water Management, 258,1-30. https://doi.org/10.1016/j.agwat.2021.107201
Febrian, M. E., Ferdinan, F. X., Sendani, G. P., Suryanigrum, K. M., & Yunanda, R. (2022). Diabetes prediction using supervised machine learning. Procedia Computer Science, 216(1), 21–30. https://doi.org/10.1016/j.procs.2022.12.107
Ikram, R. M. A., Goliatt, L., Kisi, O., Trajkovic, S., & Shahid, S. (2022). Covariance Matrix Adaptation Evolution Strategy for Improving Machine Learning Approaches in Streamflow Prediction. Mathematics, 10(16), 1–30. https://doi.org/10.3390/math10162971
Imam, P,. Kholisotul, M., Wahyu, D. R., Anggi Eka Saputri, Lisa Amalia Fitroh, S. F. (2024). Srategi Pembelajaran PAI Pada Anak Berkebutuhan Khusus Tunanetra Imam. Social, Humanities, and Educational Studies (SHES), 7(3), 2430–2438.
Ishak, I., Prayudha, J., Setiawan, D., Azmi, Z., & Giawa, S. (2024). Sistem Pakar Mendiangosa Penyakit Kulit Pada Manusia Menggunakan Metode Demphster Shafer.Jurnal Sains Manajemen Informatika Dan Komputer, 23(1), 15-25. https://doi.org/10.53513/jis.v23i1.9544
Khoirunisa, S., Muhroji, M., Wulandari, R., & Pratiwi, A. S. (2024). Penguatan Rasa Percaya Diri Siswa dalam Berkomunikasi di Sekolah Inklusi. Buletin KKN Pendidikan, 6(1), 97–109. https://doi.org/10.23917/bkkndik.v6i1.23644
Kiswanto, K., Benny, B. W., Yuri, Y., Mar, M., Sarwindah, S., & Supardi, S. (2022). Penerapan Logika ANFIS Sistem Penilaian Kinerja Dosen Pada Tri Dharma dan Perilaku Kerja. Jurnal Sistem Informasi Bisnis, 12(1), 57–65. https://doi.org/10.21456/vol12iss1pp57-65
Kumari, S., Agarwal, S., Kumar, M., Sharma, P., Kumar, A., Hashem, A., Alotaibi, N. H., Abd-Allah, E. F., & Garg, M. C. (2025). An exploration of RSM, ANN, and ANFIS models for methylene blue dye adsorption using Oryza sativa straw biomass: a comparative approach. Scientific Reports, 15(1), 1–15. https://doi.org/10.1038/s41598-025-87274-3
M. Khalaf, M. (2020). Algorithms and Optimal Choice for Power Plants Based on M-Polar Fuzzy Soft Set Decision Making Criterions. Acta Electronica Malaysia, 4(1), 11–23. https://doi.org/10.26480/aem.01.2020.11.23
Maharani, G. F., Mulyawan, F., & Susetyo, B. (2024). Peran Pelatihan Petugas Upacara dalam Mengembangkan Keterampilan Sosial Siswa Tunarungu Kelas 8 SMP. JIIP - Jurnal Ilmiah Ilmu Pendidikan, 7(7), 7101–7104. https://doi.org/10.54371/jiip.v7i7.4789
Mosavi, A., Shamshirband, S., Salwana, E., Chau, K. wing, & Tah, J. H. M. (2019). Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning. Engineering Applications of Computational Fluid Mechanics, 13(1), 482–492. https://doi.org/10.1080/19942060.2019.1613448
Murwati, S., & Syefriani, S. (2024). Penggunaan bahasa isyarat dalam pembelajaran seni tari bagi siswa tunarungu tingkat sekolah menengah pertama di sekolah luar biasa. JPPI (Jurnal Penelitian Pendidikan Indonesia), 10(4), 180–196. https://doi.org/http://dx.doi.org/10.29210/020244358
Mutiah, O. M., Sekar, A. Y., & Ramadhan, M. S. (2024). Gambar anak berkebutuhan khusus sebagai inspirasi motif batik ( studi kasus : seragam sekolah khusus Pelita Bunda Samarinda ). Jurnal Desain, 12(1), 139–155. http://dx.doi.org/10.30998/jd.v12i1.20107
Muzakki, A., Wuryandani, W., & Kawuryan, S. P. (2025). The Use of Nearpod Interactive Media in Science Subjects in Elementary Schools. Jurnal Penelitian Pendidikan IPA, 11(5), 44–49. https://doi.org/10.29303/jppipa.v11i5.11182
Nisa Fajar Suriatika, Bakhrudin All Habsy, E. P. S. (2025). Persepektif Bullying Terhadap Peserta Didik Berkebutuhan Khusus Pada Sistem Pendidikan Inklusif: Studi Literatur Nisa. G-COUNS: Jurnal Bimbingan Dan Konseling, 9(2), 1186–1205. https://doi.org/10.31316/g-couns.v9i2.7178
Nugraha, Y. T., Ghabriel, K., & Dharmawan, I. F. (2021). Implementasi ANFIS Dalam Prakiraan Konsumsi Energi Listrik Di Kota Medan Pada Tahun 2030. Rekayasa Elektrikal Dan Energi, 4(1), 55–59. https://doi.org/10.30596/rele.v4i1.7826
Pratama, A. P., Jaudah, S. A., Arrohman, T., Ponorogo, I., Pramuka, J., Ronowijayan, N., Siman, K., & Ponorogo, K. (2024). Integrasi Nilai-Nilai Kesetaraan dalam Praktik Pendidikan : Sebuah Pembentukan Lingkungan Pembelajaran di SLB-B dan SLB-C Pertiwi Ponorogo. 5(2), 399–414. https://doi.org/10.51874/jips.v5i2.238
Rabiasa, S. A., Paramata, D. D., Yusuf, M., Odja, A. H., Supartin, & Setiawan, D. G. E. (2024). Development of Animated Video Learning Media in Increasing Learning Interest of Deaf Students at Special Schools. Jurnal Penelitian Pendidikan IPA, 10(7), 4327–4332. https://doi.org/10.29303/jppipa.v10i7.8000
Ratnasari, R., Doyan, A., & Makhrus, M. (2023). Pengembangan Perangkat Pembelajaran Berbasis Proyek Terintegrasi STEM pada Materi Suhu dan Kalor untuk Meningkatkan Keterampilan Generik Sains Dan Kreativitas Peserta Didik: Instrumen Validasi. Jurnal Penelitian Pendidikan IPA, 9(9), 6992–6999. https://doi.org/10.29303/jppipa.v9i9.4178
Sari, R., Setyo, B., & Marhayati, N. (2025). Inovasi Layanan Inklusif di Pondok Pesantren Khusus Islam untuk Anak Berkebutuhan Khusus sebagai Model Pendidikan Berbasis Kebutuhan.Jurnal Ilmiah Ilmu Pendidikan, 8(2), 1842–1855. https://doi.org/10.54371/jiip.v8i2.6999
Sinaga, M. D., Sari, N., Sembiring, B., Ginting, E., Jhony, C., Sianturi, M., & Fauzi, M. (2024). Penerapan Metode Adaptive Neuro-Fuzzy Inference System ( ANFIS ) untuk Memprediksi Kelulusan Mahasiswa.informatic technique journal, 12(1), 27–39. https://doi.org/10.22303/it.12.1.2024.27-39
Sugiharto, B., Harkim, Simanungkalit, R. V, Siregar, I., & Andriani, M. (2023). Artificial Intelligence (AI) Architecture for Integrated Smart Digital Banking System. Jurnal Penelitian Pendidikan IPA, 9(10), 876–882. https://doi.org/10.29303/jppipa.v9i10.4645
Widoningrum, W. K., Rahmawati, D., Handayani, A., Pascasarjana, P., & Dikdas, P. (2025). Desain kurikulum yang fleksibel untuk anak berkebutuhan khusus pada tk pangudi luhur vincentius. Jurnal Visi, 17(1), 83–88. https://doi.org/10.26418/jvip.v17i1.88933
Wulayalin, K. A., & Suprihatiningrum, J. (2024). Creating Accessible Chemistry Content for Students with Disabilities: Findings from Schools Providing Inclusive Education in Indonesia. Jurnal Penelitian Pendidikan IPA, 10(5), 2199–2210. https://doi.org/10.29303/jppipa.v10i5.6755
Yaseen, Z. M., Al-Juboori, A. M., Beyaztas, U., Al-Ansari, N., Chau, K. W., Qi, C., Ali, M., Salih, S. Q., & Shahid, S. (2020). Prediction of evaporation in arid and semi-arid regions: a comparative study using different machine learning models. Engineering Applications of Computational Fluid Mechanics, 14(1), 70–89. https://doi.org/10.1080/19942060.2019.1680576
Zhang, Z., Lin, Y., & Jin, B. (2021). Underwater TDOA/AOA joint localization algorithm based on hybrid invasive weed optimization algorithm. IET Communications, 15(19), 2376–2389. https://doi.org/10.1049/cmu2.12277
License
Copyright (c) 2025 Ermin, La Jupriadi Fakhri, Fisal Aliama

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






