Innovation and Validation of Relative Permeability Experimental Tools Using Metal Materials as a Medium for High School Physics Education
DOI:
10.29303/jppipa.v11i11.13018Published:
2025-11-30Downloads
Abstract
This research is motivated by the limitations of physics learning media in high schools, especially in magnetism materials, which are abstract and difficult to understand without the support of appropriate experimental tools. This condition hinders students' ability to relate theory to real phenomena. This research aims to develop and test the feasibility of a relative permeability experiment tool for metal materials as a high school physics learning medium. This tool is designed to help students understand the concept of magnetism, especially the relationship between the number of turns, voltage, current strength, magnetic induction, and relative permeability in various types of metals. The research method used is research and development (R&D). The test results show that steel has an average relative permeability value (μr) of 3.9, which indicates strong ferromagnetic properties, while iron has an μr of around 1.4 with moderate ferromagnetic properties. Aluminum with an average μr of 1.0 and brass, with an average μr of 0.7 are classified as non-ferromagnetic. Thus, this test tool can clearly distinguish ferromagnetic and non-ferromagnetic materials based on their relative permeability values. Validation was conducted by three experts, with an average value of 3.77, which is considered very high. Furthermore, a practicality test involving 16 high school physics teachers showed a very high practicality category. Based on these results, it can be concluded that the developed relative permeability experiment tool is valid, practical, and suitable for use as a physics learning medium to improve students' understanding of the concept of magnetism
Keywords:
High school Innovation and validation Metal materials Physics learning media Relative permeability experimental toolsReferences
Akinwole, O. O., & Oladimeji, T. T. (2018). Design and Implementation of Arduino Microcontroller Based Automatic Lighting Control with I2C LCD Display. Journal of Electrical & Electronic Systems, 07(02), 2332–0796. https://doi.org/10.4172/2332-0796.1000258
Astuti, I. A. D., Bhakti, Y. B., & Prasetya, R. (2021). Four Tier-Magnetic Diagnostic Test (4T-MDT): Instrumen Evaluasi Medan Magnet Untuk Mengidentifikasi Miskonsepsi Siswa. JIPFRI (Jurnal Inovasi Pendidikan Fisika Dan Riset Ilmiah), 5(2), 110–115. https://doi.org/10.30599/jipfri.v5i2.1205
Bai, M., Liu, L., Li, C., & Song, K. (2020). Relative permeability characteristics during carbon capture and sequestration process in low-permeable reservoirs. Materials, 13(4), 990. https://doi.org/10.3390/ma13040990
Delpisheh, M., Ebrahimpour, B., Fattahi, A., Siavashi, M., Mir, H., Mashhadimoslem, H., Abdol, M. A., Ghorbani, M., Shokri, J., Niblett, D., Khosravi, K., Rahimi, S., Alirahmi, S. M., Yu, H., Elkamel, A., Niasar, V., & Mamlouk, M. (2024). Leveraging machine learning in porous media. Journal of Materials Chemistry A, 12(32), 20717–20782. https://doi.org/10.1039/d4ta00251b
Drnovšek, B., Bregar, V. B., & Pavlin, M. (2009). Numerical study of effective permeability of soft-magnetic composites with conductive inclusions. Journal of Applied Physics, 105(7). https://doi.org/10.1063/1.3081380
Ernidawati, E., Darmadi, D., Fauza, N., Idris, I., Syaflita, D., Junaidi, M., & Sundari, P. D. (2025). Effectiveness of Experimental Tools for Testing the Permeability of Metal Materials to Increase Student Learning Motivation. Journal of Natural Science and Integration, 8(1), 140. https://doi.org/10.24014/jnsi.v8i1.32799
Ernidawati, F., & Dhuha, N. A. (2023). Alat Eksperimen Pengujian Permeabilitas Bahan Logam. Insight Mediatama.
Fiske, T., Gokturk, H. S., Yazici, R., & Kalyon, D. M. (1997). Effects of flow induced orientation of ferromagnetic particles on relative magnetic permeability of injection molded composites. Polymer Engineering and Science, 37(5), 826–837. https://doi.org/10.1002/pen.11725
Hamilton, N. C. (2015). The complex initial reluctivity, permeability and susceptibility spectra of magnetic materials. Journal of Magnetism and Magnetic Materials, 377, 496–501. https://doi.org/10.1016/j.jmmm.2014.10.061
Hartini, Y. S., Lefanska, A. B. P., Ursia, A. A., Prasetyo, D. A. B., & Sugiharto, B. (2022). Penerapan Dan Pendidikan’Sains Dan Teknologi’Pasca Pandemi. Sanata Dharma University Press.
Huang, H., Tsukahara, H., Kato, A., Ono, K., & Suzuki, K. (2024). Effect of magnetostriction on ac initial permeability of amorphous and nanocrystalline alloys. Journal of Magnetism and Magnetic Materials, 592, 171810. https://doi.org/10.1016/j.jmmm.2024.171810
Kamil, F., Harahap, S. P. R., & Kurnila, N. (2022). Pembelajaran dengan Pendekatan Saintifik Berbasis Masalah untuk Menumbuhkan Motivasi Belajar Mahasiswa. Jurnal Suluh Pendidikan, 10(2), 56–69. https://doi.org/10.36655/jsp.v10i2.783
Koo, B., Jang, M. S., Park, J. M., Kwon, Y. T., Yang, S., Park, Y. H., & Jeong, J. W. (2023). High-permeability Fe-based soft magnetic composite comprising anisotropic Fe-Si chip fillers. Materials Characterization, 195, 112460. https://doi.org/10.1016/j.matchar.2022.112460
Lan, Y., Guo, P., Liu, Y., Wang, S., Cao, S., Zhang, J., Sun, W., Qi, D., & Ji, Q. (2024). State of the Art on Relative Permeability Hysteresis in Porous Media: Petroleum Engineering Application. Applied Sciences (Switzerland), 14(11), 4639. https://doi.org/10.3390/app14114639
Li, J., Qin, C., Ge, J., Hu, X., Zeng, L., & Pei, R. (2025). Magnetic behavior of high permeability materials over wide temperature range. AIP Advances, 15(3). https://doi.org/10.1063/9.0000932
Lo Sciuto, G., Kowol, P., & Pilśniak, A. (2022). Automated measurements and characterization of magnetic permeability in magnetorheological fluid. Microfluidics and Nanofluidics, 26(8), 55. https://doi.org/10.1007/s10404-022-02565-9
Lopez-Dominguez, V., Garcia, M. A., Marin, P., & Hernando, A. (2017). Measurement of the magnetic permeability of amorphous magnetic microwires by using their antenna resonance. Review of Scientific Instruments, 88(12). https://doi.org/10.1063/1.4996640
Mardhiyah, R. H., Aldriani, S. N. F., Chitta, F., & Zulfikar, M. R. (2021). Pentingnya Keterampilan Belajar di Abad 21 sebagai Tuntutan dalam Pengembangan Sumber Daya Manusia. Lectura : Jurnal Pendidikan, 12(1), 29–40. https://doi.org/10.31849/lectura.v12i1.5813
Mashudi, M. (2021). Pembelajaran Modern: Membekali Peserta Didik Keterampilan Abad Ke-21. Al-Mudarris (Jurnal Ilmiah Pendidikan Islam), 4(1), 93–114. https://doi.org/10.23971/mdr.v4i1.3187
Mu’minah, I. H. (2021). Studi Literatur: Pembelajaran Abad-21 Melalui Pendekatan STEAM (Science, Technology, Engineering, Art, and Mathematics) dalam Menyongsong Era Society 5.0. Prosiding Seminar Nasional Pendidikan, 5(0), 584–594. Retrieved from https://prosiding.unma.ac.id/index.php/semnasfkip/article/view/654
Mulyatiningsih, E. (2016). Pengembangan model pembelajaran. https://shorturl.at/uEl2o
Nisa, A., Wijaya, I., & Sefriani, R. (2023). Uji Praktikalitas E-Modul Pembelajaran Project Based Learning Menggunakan Sigil Pada Mata Pelajaran Dasar-Dasar Kejuruan Siswa Kelas X Pengembangan Perangkat Lunak dan GIM (PPLG) di SMK N 1 Singkarak. PIJAR: Jurnal Pendidikan Dan Pengajaran, 2(1), 12–20. https://doi.org/10.58540/pijar.v2i1.427
Osmani, K., & Schulz, D. (2025). Protocol for contactless electric current sensing, processing, and storage using a drone-integrable sensor. STAR Protocols, 6(4), 104096. https://doi.org/10.1016/j.xpro.2025.104096
Prasetiyo, N. A., & Perwiraningtyas, P. (2017). Pengembangan Buku Ajar Berbasis Lingkungan Hidup pada Matakuliah Biologi di Universitas Tribhuwana Tunggadewi. Jurnal Pendidikan Biologi Indonesia, 3(1), 19–27. Retrieved from http://ejournal.umm.ac.id/index.php/jpbi
Prasetyawati, F. Y., Harjunowibowo, D., Fauzi, A., Utomo, B., & Harmanto, D. (2023). Calibration and Validation of INA219 as Sensor Power Monitoring System using Linear Regression. AIUB Journal of Science and Engineering, 22(3), 240–249. https://doi.org/10.53799/AJSE.V22I3.595
Qin, L., Arjomand, E., Myers, M. B., Otto, C., Pejcic, B., Heath, C., Saeedi, A., & Wood, C. (2020). Mechanistic Aspects of Polymeric Relative Permeability Modifier Adsorption onto Carbonate Rocks. Energy and Fuels, 34(10), 12065–12077. https://doi.org/10.1021/acs.energyfuels.0c01590
Rahman, S. S., Hussain, S. T., Azim, R. A., Haryono, D., & Regenauer-Lieb, K. (2021). Multiphase fluid flow through fractured porous media supported by innovative laboratory and numerical methods for estimating relative permeability. Energy and Fuels, 35(21), 17372–17388. https://doi.org/10.1021/acs.energyfuels.1c01313
Rosyid, A., & Mubin, F. (2024). Pembelajaran Abad 21: Melihat Lebih Dekat Inovasi Dan Implementasinya Dalam Konteks Pendidikan Indonesia. Tarbawi : Jurnal Pemikiran Dan Pendidikan Islam, 7(1), 1–12. https://doi.org/10.51476/tarbawi.v7i1.586
Sari, M. V., Afrida, J., Rusydi, R., & Alaidin, S. F. (2024). Analisis Kesulitan Siswa dalam Pemecahan Masalah Fisika pada Konsep Medan Magnet Menggunakan Metode Krulik-Rudnick: Studi Empiris di SMAN 1 Seunagan. Desultanah: Journal Education and Social Science, 2(2), 1–14. https://doi.org/10.69548/d-jess.v2i2.29
Sedaghat, M., Azizmohammadi, S., & Matthäi, S. K. (2020). Does the symmetry of absolute permeability influence relative permeability tensors in naturally fractured rocks? Journal of Petroleum Exploration and Production Technology, 10(2), 455–466. https://doi.org/10.1007/s13202-019-00756-9
SRakhonde, R., RLakde, P., KBadwaik, S., BRonghe, A., Sonule, D. P., & J Shende, A. C. (2021). A Review on Role of Arduino Uno Used in Dual Axis Solar Tracker. International Journal of Science, Engineering and Technology, 9, 1. Retrieved from https://www.ijset.in/wp-content/uploads/IJSET_V9_issue1_131.pdf
Sun, J., Lu, Y., Zhang, L., Le, Y., & Zhao, X. (2022). A Method to Measure Permeability of Permalloy in Extremely Weak Magnetic Field Based on Rayleigh Model. Materials, 15(20), 7353. https://doi.org/10.3390/ma15207353
Syas’ko, V. A., Golubev, S. S., Smorodinskii, Y. G., Solomenchuk, P. V., & Bryukhovetskaya, E. B. (2019). Measuring Magnetic Permeability of Monolithic Annular Measures in Alternating Magnetic Fields. Russian Journal of Nondestructive Testing, 55(11), 851–857. https://doi.org/10.1134/S1061830919110093
Yamaguchi, M., Miyazawa, Y., & Miura, T. (2023). Higher-Frequency Permeability Measurement by Harmonic Resonance Cavity Perturbation Method. IEEE Transactions on Magnetics, 59(11), 1–5. https://doi.org/10.1109/TMAG.2023.3287928
Youssef, A. A. A., Shao, Q., & Matthäi, S. K. (2024). Computing Relative Permeability and Capillary Pressure of Heterogeneous Rocks Using Realistic Boundary Conditions. Transport in Porous Media, 151(8), 1729–1754. https://doi.org/10.1007/s11242-024-02092-x
Yuliawati, S., Putra, I. A., & Prihatiningtyas, S. (2023). Validasi Media Pembelajaran Interaktif Pada Materi Fluida Dinamis: Penelitian Pengembangan Berbasis Microsoft Powerpoint. Universitas Negeri Malang Sabtu, 8, 2023. Retrieved from https://conference.um.ac.id/index.php/LAS/article/download/8312/2636
Zeng, P., Mu, L., & Zhang, Y. (2019). Models for liquid relative permeability of cementitious porous media at elevated temperature: Comparisons and discussions. Mathematical Biosciences and Engineering, 16(5), 4007–4035. https://doi.org/10.3934/mbe.2019198
Zhang, J., Feng, Q., Zhang, X., Wen, S., & Zhai, Y. (2015). Relative Permeability of Coal: A Review. Transport in Porous Media, 106(3), 563–594. https://doi.org/10.1007/s11242-014-0414-4
Zhang, J., Liao, X., Zhou, Q., Xu, K., Fan, W., Yu, H., Zhong, X., & Liu, Z. (2022). Enhanced hard-magnetic properties and thermal stability of nanocrystalline Ce-rich Ce-Fe-B alloys by combining La substitution and Si addition. Journal of Magnetism and Magnetic Materials, 552, 169217. https://doi.org/10.1016/j.jmmm.2022.169217
Zhao, T., He, Y., Song, L., Li, X., & Chen, X. (2022). Research on the Relationship between Electrical Parameters and Relative Permeability of Tight Sandstone. ACS Omega, 7(2), 2147–2159. https://doi.org/10.1021/acsomega.1c05510
Zhu, S. J., Duan, F., Ni, J. L., Feng, S. J., Liu, X. S., Lv, Q. R., & Kan, X. C. (2022). Soft magnetic composites FeSiAl/MoS2 with high magnetic permeability and low magnetic loss. Journal of Alloys and Compounds, 926, 166893. https://doi.org/10.1016/j.jallcom.2022.166893
License
Copyright (c) 2025 Ernidawati, Mitri Irianti, Zuhdi Ma’ruf, Idris, Wilda Novianti, Abdul Hamid Sinaga, Rahmi Hidayah, Dhuha Fatihul Burhan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






