Vol. 11 No. 11 (2025): November
Open Access
Peer Reviewed

Innovation and Validation of Relative Permeability Experimental Tools Using Metal Materials as a Medium for High School Physics Education

Authors

Ernidawati , Mitri Irianti , Zuhdi Ma’ruf , Idris , Wilda Novianti , Abdul Hamid Sinaga , Rahmi Hidayah , Dhuha Fatihul Burhan

DOI:

10.29303/jppipa.v11i11.13018

Published:

2025-11-30

Downloads

Abstract

This research is motivated by the limitations of physics learning media in high schools, especially in magnetism materials, which are abstract and difficult to understand without the support of appropriate experimental tools. This condition hinders students' ability to relate theory to real phenomena. This research aims to develop and test the feasibility of a relative permeability experiment tool for metal materials as a high school physics learning medium. This tool is designed to help students understand the concept of magnetism, especially the relationship between the number of turns, voltage, current strength, magnetic induction, and relative permeability in various types of metals. The research method used is research and development (R&D). The test results show that steel has an average relative permeability value (μr) of 3.9, which indicates strong ferromagnetic properties, while iron has an μr of around 1.4 with moderate ferromagnetic properties. Aluminum with an average μr of 1.0 and brass, with an average μr of 0.7 are classified as non-ferromagnetic. Thus, this test tool can clearly distinguish ferromagnetic and non-ferromagnetic materials based on their relative permeability values. Validation was conducted by three experts, with an average value of 3.77, which is considered very high. Furthermore, a practicality test involving 16 high school physics teachers showed a very high practicality category. Based on these results, it can be concluded that the developed relative permeability experiment tool is valid, practical, and suitable for use as a physics learning medium to improve students' understanding of the concept of magnetism

Keywords:

High school Innovation and validation Metal materials Physics learning media Relative permeability experimental tools

References

Akinwole, O. O., & Oladimeji, T. T. (2018). Design and Implementation of Arduino Microcontroller Based Automatic Lighting Control with I2C LCD Display. Journal of Electrical & Electronic Systems, 07(02), 2332–0796. https://doi.org/10.4172/2332-0796.1000258

Astuti, I. A. D., Bhakti, Y. B., & Prasetya, R. (2021). Four Tier-Magnetic Diagnostic Test (4T-MDT): Instrumen Evaluasi Medan Magnet Untuk Mengidentifikasi Miskonsepsi Siswa. JIPFRI (Jurnal Inovasi Pendidikan Fisika Dan Riset Ilmiah), 5(2), 110–115. https://doi.org/10.30599/jipfri.v5i2.1205

Bai, M., Liu, L., Li, C., & Song, K. (2020). Relative permeability characteristics during carbon capture and sequestration process in low-permeable reservoirs. Materials, 13(4), 990. https://doi.org/10.3390/ma13040990

Delpisheh, M., Ebrahimpour, B., Fattahi, A., Siavashi, M., Mir, H., Mashhadimoslem, H., Abdol, M. A., Ghorbani, M., Shokri, J., Niblett, D., Khosravi, K., Rahimi, S., Alirahmi, S. M., Yu, H., Elkamel, A., Niasar, V., & Mamlouk, M. (2024). Leveraging machine learning in porous media. Journal of Materials Chemistry A, 12(32), 20717–20782. https://doi.org/10.1039/d4ta00251b

Drnovšek, B., Bregar, V. B., & Pavlin, M. (2009). Numerical study of effective permeability of soft-magnetic composites with conductive inclusions. Journal of Applied Physics, 105(7). https://doi.org/10.1063/1.3081380

Ernidawati, E., Darmadi, D., Fauza, N., Idris, I., Syaflita, D., Junaidi, M., & Sundari, P. D. (2025). Effectiveness of Experimental Tools for Testing the Permeability of Metal Materials to Increase Student Learning Motivation. Journal of Natural Science and Integration, 8(1), 140. https://doi.org/10.24014/jnsi.v8i1.32799

Ernidawati, F., & Dhuha, N. A. (2023). Alat Eksperimen Pengujian Permeabilitas Bahan Logam. Insight Mediatama.

Fiske, T., Gokturk, H. S., Yazici, R., & Kalyon, D. M. (1997). Effects of flow induced orientation of ferromagnetic particles on relative magnetic permeability of injection molded composites. Polymer Engineering and Science, 37(5), 826–837. https://doi.org/10.1002/pen.11725

Hamilton, N. C. (2015). The complex initial reluctivity, permeability and susceptibility spectra of magnetic materials. Journal of Magnetism and Magnetic Materials, 377, 496–501. https://doi.org/10.1016/j.jmmm.2014.10.061

Hartini, Y. S., Lefanska, A. B. P., Ursia, A. A., Prasetyo, D. A. B., & Sugiharto, B. (2022). Penerapan Dan Pendidikan’Sains Dan Teknologi’Pasca Pandemi. Sanata Dharma University Press.

Huang, H., Tsukahara, H., Kato, A., Ono, K., & Suzuki, K. (2024). Effect of magnetostriction on ac initial permeability of amorphous and nanocrystalline alloys. Journal of Magnetism and Magnetic Materials, 592, 171810. https://doi.org/10.1016/j.jmmm.2024.171810

Kamil, F., Harahap, S. P. R., & Kurnila, N. (2022). Pembelajaran dengan Pendekatan Saintifik Berbasis Masalah untuk Menumbuhkan Motivasi Belajar Mahasiswa. Jurnal Suluh Pendidikan, 10(2), 56–69. https://doi.org/10.36655/jsp.v10i2.783

Koo, B., Jang, M. S., Park, J. M., Kwon, Y. T., Yang, S., Park, Y. H., & Jeong, J. W. (2023). High-permeability Fe-based soft magnetic composite comprising anisotropic Fe-Si chip fillers. Materials Characterization, 195, 112460. https://doi.org/10.1016/j.matchar.2022.112460

Lan, Y., Guo, P., Liu, Y., Wang, S., Cao, S., Zhang, J., Sun, W., Qi, D., & Ji, Q. (2024). State of the Art on Relative Permeability Hysteresis in Porous Media: Petroleum Engineering Application. Applied Sciences (Switzerland), 14(11), 4639. https://doi.org/10.3390/app14114639

Li, J., Qin, C., Ge, J., Hu, X., Zeng, L., & Pei, R. (2025). Magnetic behavior of high permeability materials over wide temperature range. AIP Advances, 15(3). https://doi.org/10.1063/9.0000932

Lo Sciuto, G., Kowol, P., & Pilśniak, A. (2022). Automated measurements and characterization of magnetic permeability in magnetorheological fluid. Microfluidics and Nanofluidics, 26(8), 55. https://doi.org/10.1007/s10404-022-02565-9

Lopez-Dominguez, V., Garcia, M. A., Marin, P., & Hernando, A. (2017). Measurement of the magnetic permeability of amorphous magnetic microwires by using their antenna resonance. Review of Scientific Instruments, 88(12). https://doi.org/10.1063/1.4996640

Mardhiyah, R. H., Aldriani, S. N. F., Chitta, F., & Zulfikar, M. R. (2021). Pentingnya Keterampilan Belajar di Abad 21 sebagai Tuntutan dalam Pengembangan Sumber Daya Manusia. Lectura : Jurnal Pendidikan, 12(1), 29–40. https://doi.org/10.31849/lectura.v12i1.5813

Mashudi, M. (2021). Pembelajaran Modern: Membekali Peserta Didik Keterampilan Abad Ke-21. Al-Mudarris (Jurnal Ilmiah Pendidikan Islam), 4(1), 93–114. https://doi.org/10.23971/mdr.v4i1.3187

Mu’minah, I. H. (2021). Studi Literatur: Pembelajaran Abad-21 Melalui Pendekatan STEAM (Science, Technology, Engineering, Art, and Mathematics) dalam Menyongsong Era Society 5.0. Prosiding Seminar Nasional Pendidikan, 5(0), 584–594. Retrieved from https://prosiding.unma.ac.id/index.php/semnasfkip/article/view/654

Mulyatiningsih, E. (2016). Pengembangan model pembelajaran. https://shorturl.at/uEl2o

Nisa, A., Wijaya, I., & Sefriani, R. (2023). Uji Praktikalitas E-Modul Pembelajaran Project Based Learning Menggunakan Sigil Pada Mata Pelajaran Dasar-Dasar Kejuruan Siswa Kelas X Pengembangan Perangkat Lunak dan GIM (PPLG) di SMK N 1 Singkarak. PIJAR: Jurnal Pendidikan Dan Pengajaran, 2(1), 12–20. https://doi.org/10.58540/pijar.v2i1.427

Osmani, K., & Schulz, D. (2025). Protocol for contactless electric current sensing, processing, and storage using a drone-integrable sensor. STAR Protocols, 6(4), 104096. https://doi.org/10.1016/j.xpro.2025.104096

Prasetiyo, N. A., & Perwiraningtyas, P. (2017). Pengembangan Buku Ajar Berbasis Lingkungan Hidup pada Matakuliah Biologi di Universitas Tribhuwana Tunggadewi. Jurnal Pendidikan Biologi Indonesia, 3(1), 19–27. Retrieved from http://ejournal.umm.ac.id/index.php/jpbi

Prasetyawati, F. Y., Harjunowibowo, D., Fauzi, A., Utomo, B., & Harmanto, D. (2023). Calibration and Validation of INA219 as Sensor Power Monitoring System using Linear Regression. AIUB Journal of Science and Engineering, 22(3), 240–249. https://doi.org/10.53799/AJSE.V22I3.595

Qin, L., Arjomand, E., Myers, M. B., Otto, C., Pejcic, B., Heath, C., Saeedi, A., & Wood, C. (2020). Mechanistic Aspects of Polymeric Relative Permeability Modifier Adsorption onto Carbonate Rocks. Energy and Fuels, 34(10), 12065–12077. https://doi.org/10.1021/acs.energyfuels.0c01590

Rahman, S. S., Hussain, S. T., Azim, R. A., Haryono, D., & Regenauer-Lieb, K. (2021). Multiphase fluid flow through fractured porous media supported by innovative laboratory and numerical methods for estimating relative permeability. Energy and Fuels, 35(21), 17372–17388. https://doi.org/10.1021/acs.energyfuels.1c01313

Rosyid, A., & Mubin, F. (2024). Pembelajaran Abad 21: Melihat Lebih Dekat Inovasi Dan Implementasinya Dalam Konteks Pendidikan Indonesia. Tarbawi : Jurnal Pemikiran Dan Pendidikan Islam, 7(1), 1–12. https://doi.org/10.51476/tarbawi.v7i1.586

Sari, M. V., Afrida, J., Rusydi, R., & Alaidin, S. F. (2024). Analisis Kesulitan Siswa dalam Pemecahan Masalah Fisika pada Konsep Medan Magnet Menggunakan Metode Krulik-Rudnick: Studi Empiris di SMAN 1 Seunagan. Desultanah: Journal Education and Social Science, 2(2), 1–14. https://doi.org/10.69548/d-jess.v2i2.29

Sedaghat, M., Azizmohammadi, S., & Matthäi, S. K. (2020). Does the symmetry of absolute permeability influence relative permeability tensors in naturally fractured rocks? Journal of Petroleum Exploration and Production Technology, 10(2), 455–466. https://doi.org/10.1007/s13202-019-00756-9

SRakhonde, R., RLakde, P., KBadwaik, S., BRonghe, A., Sonule, D. P., & J Shende, A. C. (2021). A Review on Role of Arduino Uno Used in Dual Axis Solar Tracker. International Journal of Science, Engineering and Technology, 9, 1. Retrieved from https://www.ijset.in/wp-content/uploads/IJSET_V9_issue1_131.pdf

Sun, J., Lu, Y., Zhang, L., Le, Y., & Zhao, X. (2022). A Method to Measure Permeability of Permalloy in Extremely Weak Magnetic Field Based on Rayleigh Model. Materials, 15(20), 7353. https://doi.org/10.3390/ma15207353

Syas’ko, V. A., Golubev, S. S., Smorodinskii, Y. G., Solomenchuk, P. V., & Bryukhovetskaya, E. B. (2019). Measuring Magnetic Permeability of Monolithic Annular Measures in Alternating Magnetic Fields. Russian Journal of Nondestructive Testing, 55(11), 851–857. https://doi.org/10.1134/S1061830919110093

Yamaguchi, M., Miyazawa, Y., & Miura, T. (2023). Higher-Frequency Permeability Measurement by Harmonic Resonance Cavity Perturbation Method. IEEE Transactions on Magnetics, 59(11), 1–5. https://doi.org/10.1109/TMAG.2023.3287928

Youssef, A. A. A., Shao, Q., & Matthäi, S. K. (2024). Computing Relative Permeability and Capillary Pressure of Heterogeneous Rocks Using Realistic Boundary Conditions. Transport in Porous Media, 151(8), 1729–1754. https://doi.org/10.1007/s11242-024-02092-x

Yuliawati, S., Putra, I. A., & Prihatiningtyas, S. (2023). Validasi Media Pembelajaran Interaktif Pada Materi Fluida Dinamis: Penelitian Pengembangan Berbasis Microsoft Powerpoint. Universitas Negeri Malang Sabtu, 8, 2023. Retrieved from https://conference.um.ac.id/index.php/LAS/article/download/8312/2636

Zeng, P., Mu, L., & Zhang, Y. (2019). Models for liquid relative permeability of cementitious porous media at elevated temperature: Comparisons and discussions. Mathematical Biosciences and Engineering, 16(5), 4007–4035. https://doi.org/10.3934/mbe.2019198

Zhang, J., Feng, Q., Zhang, X., Wen, S., & Zhai, Y. (2015). Relative Permeability of Coal: A Review. Transport in Porous Media, 106(3), 563–594. https://doi.org/10.1007/s11242-014-0414-4

Zhang, J., Liao, X., Zhou, Q., Xu, K., Fan, W., Yu, H., Zhong, X., & Liu, Z. (2022). Enhanced hard-magnetic properties and thermal stability of nanocrystalline Ce-rich Ce-Fe-B alloys by combining La substitution and Si addition. Journal of Magnetism and Magnetic Materials, 552, 169217. https://doi.org/10.1016/j.jmmm.2022.169217

Zhao, T., He, Y., Song, L., Li, X., & Chen, X. (2022). Research on the Relationship between Electrical Parameters and Relative Permeability of Tight Sandstone. ACS Omega, 7(2), 2147–2159. https://doi.org/10.1021/acsomega.1c05510

Zhu, S. J., Duan, F., Ni, J. L., Feng, S. J., Liu, X. S., Lv, Q. R., & Kan, X. C. (2022). Soft magnetic composites FeSiAl/MoS2 with high magnetic permeability and low magnetic loss. Journal of Alloys and Compounds, 926, 166893. https://doi.org/10.1016/j.jallcom.2022.166893

Author Biographies

Ernidawati, Universitas Riau, Pekanbaru

Author Origin : Indonesia

Mitri Irianti, Universitas Riau, Pekanbaru

Author Origin : Indonesia

Zuhdi Ma’ruf, Universitas Riau, Pekanbaru

Author Origin : Indonesia

Idris, Institute for Contemporary Socio-Political Studies

Author Origin : Indonesia

Wilda Novianti, Universitas Riau, Pekanbaru

Author Origin : Indonesia

Abdul Hamid Sinaga, Universitas Riau, Pekanbaru

Author Origin : Indonesia

Rahmi Hidayah, Universitas Riau, Pekanbaru

Author Origin : Indonesia

Dhuha Fatihul Burhan, Universitas Riau

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Ernidawati, E., Irianti, M., Ma’ruf, Z., Idris, I., Novianti, W., Sinaga, A. H., … Burhan, D. F. (2025). Innovation and Validation of Relative Permeability Experimental Tools Using Metal Materials as a Medium for High School Physics Education. Jurnal Penelitian Pendidikan IPA, 11(11), 1029–1043. https://doi.org/10.29303/jppipa.v11i11.13018