Vol. 11 No. 11 (2025): November
Open Access
Peer Reviewed

Digital Epidemiological Surveillance Data Utilization for Decision-Making in Disease Control: A Mixed-Methods Evaluation in Riau Province

Authors

Ade Dita Puteri , Arif Mudi Priyanto , Raudhatun Nuzul ZA

DOI:

10.29303/jppipa.v11i11.13044

Published:

2025-11-25

Downloads

Abstract

Digital epidemiological surveillance data forms the foundation of evidence-based public health decision-making, yet data availability does not guarantee optimal utilization in managerial processes. This study aims to evaluate the utilization of digital epidemiological surveillance data in decision-making for disease control programs in Riau Province. The study employed a mixed-methods design with a sequential explanatory approach, involving 156 respondents (decision-makers, surveillance officers, and information system managers) from the Provincial Health Office and 8 District/City Health Offices. Quantitative data were collected through structured questionnaires and analyzed using descriptive, bivariate, and multivariate statistics. Qualitative data were collected through 18 in-depth interviews, 6 FGDs, document review, and observation, then analyzed using thematic content analysis. Although 89.7% of respondents reported routine data availability and 87.5% of locations had implemented web-based surveillance systems, utilization for advanced analysis remained limited: spatial analysis (32.7%), resource allocation planning (45.5%), and forecasting (15.4%). Independent predictors of high data utilization were analytical training (AOR=3.42), satisfactory data quality (AOR=2.87), easy accessibility (AOR=2.64), and adequate supervisory support (AOR=2.31). Major problems included analytical capacity gaps (only 34.6% felt capable), information system fragmentation (31.4% integrated), underutilization of digital infrastructure (only 18.6% routinely using dashboards), and a decision-making culture based on experience rather than data. There is a significant gap between digital surveillance infrastructure availability and its utilization for strategic decision-making. Despite technological investments, digital systems function primarily as digitized manual processes rather than enabling advanced analytics.

Keywords:

Data Utilization Digital Surveillance Epidemiological Surveillance

References

Bauer, C., Ganslandt, T., Baum, B., Christoph, J., Engel, I., Löbe, M., Mate, S., Stäubert, S., Drepper, J., Prokosch, H.-U., & others. (2016). Integrated data repository toolkit (IDRT). Methods of Information in Medicine, 55(02), 125–135. https://doi.org/10.3414/ME15-01-0082

Bialke, M., Penndorf, P., Wegner, T., Bahls, T., Havemann, C., Piegsa, J., & Hoffmann, W. (2015). A workflow-driven approach to integrate generic software modules in a Trusted Third Party. Journal of Translational Medicine, 13(1), 176. https://doi.org/10.1186/s12967-015-0545-6

Chisha, Z., Larsen, D. A., Burns, M., Miller, J. M., Chirwa, J., Mbwili, C., Bridges, D. J., Kamuliwo, M., Hawela, M., Tan, K. R., & others. (2015). Enhanced surveillance and data feedback loop associated with improved malaria data in Lusaka, Zambia. Malaria Journal, 14(1), 222. https://doi.org/10.1186/s12936-015-0735-y

Costa-Santos, C., Neves, A. L., Correia, R., Santos, P., Monteiro-Soares, M., Freitas, A., Ribeiro-Vaz, I., Henriques, T. S., Rodrigues, P. P., Costa-Pereira, A., & others. (2021). COVID-19 surveillance data quality issues: a national consecutive case series. BMJ Open, 11(12), e047623. Retrieved from https://bmjopen.bmj.com/content/11/12/e047623.abstract

De Quirós, F. G. B., Otero, C., & Luna, D. (2018). Terminology services: standard terminologies to control health vocabulary. Yearbook of Medical Informatics, 27(01), 227–233. https://doi.org/10.1055/s-0038-1641200

Delgado, D., Wyss Quintana, F., Perez, G., Sosa Liprandi, A., Ponte-Negretti, C., Mendoza, I., & Baranchuk, A. (2020). Personal safety during the COVID-19 pandemic: realities and perspectives of healthcare workers in Latin America. International Journal of Environmental Research and Public Health, 17(8), 2798. https://doi.org/10.3390/ijerph17082798

Howes, R. E., Mioramalala, S. A., Ramiranirina, B., Franchard, T., Rakotorahalahy, A. J., Bisanzio, D., Gething, P. W., Zimmerman, P. A., & Ratsimbasoa, A. (2016). Contemporary epidemiological overview of malaria in Madagascar: operational utility of reported routine case data for malaria control planning. Malaria Journal, 15(1), 502. https://doi.org/10.1186/s12936-016-1556-3

Hung, Y. W., Hoxha, K., Irwin, B. R., Law, M. R., & Grépin, K. A. (2020). Using routine health information data for research in low-and middle-income countries: a systematic review. BMC Health Services Research, 20(1), 790. https://doi.org/10.1186/s12913-020-05660-1

Ivanković, D., Barbazza, E., Bos, V., Brito Fernandes, Ó., Jamieson Gilmore, K., Jansen, T., Kara, P., Larrain, N., Lu, S., Meza-Torres, B., & others. (2021). Features constituting actionable COVID-19 dashboards: descriptive assessment and expert appraisal of 158 public web-based COVID-19 dashboards. Journal of Medical Internet Research, 23(2), e25682. https://www.jmir.org/2021/2/e25682/

Jain, R., Sontisirikit, S., Iamsirithaworn, S., & Prendinger, H. (2019). Prediction of dengue outbreaks based on disease surveillance, meteorological and socio-economic data. BMC Infectious Diseases, 19(1), 272. https://doi.org/10.1186/s12879-019-3874-x

Jannot, A.-S., Burgun, A., Thervet, E., & Pallet, N. (2017). The diagnosis-wide landscape of hospital-acquired AKI. Clinical Journal of the American Society of Nephrology, 12(6), 874–884. https://doi.org/10.2215/CJN.10981016

Kazemi-Arpanahi, H., Moulaei, K., & Shanbehzadeh, M. (2020). Design and development of a web-based registry for Coronavirus (COVID-19) disease. Medical Journal of the Islamic Republic of Iran, 34, 68. https://doi.org/10.34171/mjiri.34.68

Kostkova, P., Saigí-Rubió, F., Eguia, H., Borbolla, D., Verschuuren, M., Hamilton, C., Azzopardi-Muscat, N., & Novillo-Ortiz, D. (2021). Data and digital solutions to support surveillance strategies in the context of the COVID-19 pandemic. Frontiers in Digital Health, 3, 707902. https://doi.org/10.3389/fdgth.2021.707902

Li, S., & Mackaness, W. A. (2015). A multi-agent-based, semantic-driven system for decision support in epidemic management. Health Informatics Journal, 21(3), 195–208. https://doi.org/10.1177/1460458213517704

Lin, C., Karlson, E. W., Canhao, H., Miller, T. A., Dligach, D., Chen, P. J., Perez, R. N. G., Shen, Y., Weinblatt, M. E., Shadick, N. A., & others. (2013). Automatic prediction of rheumatoid arthritis disease activity from the electronic medical records. PloS One, 8(8), e69932. https://doi.org/10.1371/journal.pone.0069932

MacIntyre, C. R., Chen, X., Kunasekaran, M., Quigley, A., Lim, S., Stone, H., Paik, H., Yao, L., Heslop, D., Wei, W., & others. (2023). Artificial intelligence in public health: the potential of epidemic early warning systems. Journal of International Medical Research, 51(3), 03000605231159335. https://doi.org/10.1177/03000605231159335

Mercado, C. E. G., Ekapirat, N., Dondorp, A. M., & Maude, R. J. (2017). An assessment of national surveillance systems for malaria elimination in the Asia Pacific. Malaria Journal, 16(1), 127. https://doi.org/10.1186/s12936-017-1774-3

Ohrt, C., Roberts, K. W., Sturrock, H. J. W., Wegbreit, J., Lee, B. Y., & Gosling, R. D. (2015). Information systems to support surveillance for malaria elimination. The American Journal of Tropical Medicine and Hygiene, 93(1), 145. https://doi.org/10.4269/ajtmh.14-0257

Pfeiffer, D. U., & Stevens, K. B. (2015). Spatial and temporal epidemiological analysis in the Big Data era. Preventive Veterinary Medicine, 122(1–2), 213–220. https://doi.org/10.1016/j.prevetmed.2015.05.012

Premaratne, R., Wickremasinghe, R., Ranaweera, D., Gunasekera, W. M. K. T. de A. W., Hevawitharana, M., Pieris, L., Fernando, D., & Mendis, K. (2019). Technical and operational underpinnings of malaria elimination from Sri Lanka. Malaria Journal, 18(1), 256. https://doi.org/10.1186/s12936-019-2886-8

Rajvanshi, H., Bharti, P. K., Nisar, S., Jain, Y., Jayswar, H., Mishra, A. K., Sharma, R. K., Saha, K. B., Shukla, M. M., Das, A., & others. (2020). Study design and operational framework for a community-based Malaria Elimination Demonstration Project (MEDP) in 1233 villages of district Mandla, Madhya Pradesh. Malaria Journal, 19(1), 410. https://doi.org/10.1186/s12936-020-03458-4

Shretta, R., Silal, S. P., Celhay, O. J., Mercado, C. E. G., Kyaw, S. S., Avancena, A., Fox, K., Zelman, B., Baral, R., White, L. J., & others. (2020). Malaria elimination transmission and costing in the Asia-Pacific: Developing an investment case. Wellcome Open Research, 4, 60. https://doi.org/10.12688/wellcomeopenres.14769.2

Talisuna, A., Yahaya, A. A., Rajatonirina, S. C., Stephen, M., Oke, A., Mpairwe, A., Diallo, A. B., Musa, E. O., Yota, D., Banza, F. M., & others. (2019). Joint external evaluation of the International Health Regulation (2005) capacities: current status and lessons learnt in the WHO African region. BMJ Global Health, 4(6), e001312. https://gh.bmj.com/content/4/6/e001312

Talmage, C. A., Coon, D. W., Dugger, B. N., Knopf, R. C., O’Connor, K. A., & Schofield, S. A. (2020). Social leisure activity, physical activity, and valuation of life: Findings from a longevity study. Activities, Adaptation & Aging, 44(1), 61–84. https://doi.org/10.1080/01924788.2019.1581026

Van Goethem, N., Vilain, A., Wyndham-Thomas, C., Deblonde, J., Bossuyt, N., Lernout, T., Rebolledo Gonzalez, J., Quoilin, S., Melis, V., & Van Beckhoven, D. (2020). Rapid establishment of a national surveillance of COVID-19 hospitalizations in Belgium. Archives of Public Health, 78(1), 121. https://doi.org/10.1186/s13690-020-00505-z

Van Mourik, M. S. M., Perencevich, E. N., Gastmeier, P., & Bonten, M. J. M. (2018). Designing surveillance of healthcare-associated infections in the era of automation and reporting mandates. Clinical Infectious Diseases, 66(6), 970–976. https://doi.org/10.1093/cid/cix835

van Mourik, M. S. M., van Rooden, S. M., Abbas, M., Aspevall, O., Astagneau, P., Bonten, M. J. M., Carrara, E., Gomila-Grange, A., de Greeff, S. C., Gubbels, S., & others. (2021). PRAISE: providing a roadmap for automated infection surveillance in Europe. Clinical Microbiology and Infection, 27, S3--S19. https://doi.org/10.1016/j.cmi.2021.02.028

Zhang, D., Yin, C., Zeng, J., Yuan, X., & Zhang, P. (2020). Combining structured and unstructured data for predictive models: a deep learning approach. BMC Medical Informatics and Decision Making, 20(1), 280. https://doi.org/10.1186/s12911-020-01297-6

Author Biographies

Ade Dita Puteri, Universitas Pahlawan Tuanku Tambusai

Author Origin : Indonesia

Arif Mudi Priyanto, Universitas Pahlawan Tuanku Tambusai

Author Origin : Indonesia

Raudhatun Nuzul ZA, Universitas Pahlawan Tuanku Tambusai

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Puteri, A. D., Priyanto, A. M., & ZA, R. N. (2025). Digital Epidemiological Surveillance Data Utilization for Decision-Making in Disease Control: A Mixed-Methods Evaluation in Riau Province. Jurnal Penelitian Pendidikan IPA, 11(11), 242–255. https://doi.org/10.29303/jppipa.v11i11.13044