Digital Epidemiological Surveillance Data Utilization for Decision-Making in Disease Control: A Mixed-Methods Evaluation in Riau Province
DOI:
10.29303/jppipa.v11i11.13044Published:
2025-11-25Downloads
Abstract
Digital epidemiological surveillance data forms the foundation of evidence-based public health decision-making, yet data availability does not guarantee optimal utilization in managerial processes. This study aims to evaluate the utilization of digital epidemiological surveillance data in decision-making for disease control programs in Riau Province. The study employed a mixed-methods design with a sequential explanatory approach, involving 156 respondents (decision-makers, surveillance officers, and information system managers) from the Provincial Health Office and 8 District/City Health Offices. Quantitative data were collected through structured questionnaires and analyzed using descriptive, bivariate, and multivariate statistics. Qualitative data were collected through 18 in-depth interviews, 6 FGDs, document review, and observation, then analyzed using thematic content analysis. Although 89.7% of respondents reported routine data availability and 87.5% of locations had implemented web-based surveillance systems, utilization for advanced analysis remained limited: spatial analysis (32.7%), resource allocation planning (45.5%), and forecasting (15.4%). Independent predictors of high data utilization were analytical training (AOR=3.42), satisfactory data quality (AOR=2.87), easy accessibility (AOR=2.64), and adequate supervisory support (AOR=2.31). Major problems included analytical capacity gaps (only 34.6% felt capable), information system fragmentation (31.4% integrated), underutilization of digital infrastructure (only 18.6% routinely using dashboards), and a decision-making culture based on experience rather than data. There is a significant gap between digital surveillance infrastructure availability and its utilization for strategic decision-making. Despite technological investments, digital systems function primarily as digitized manual processes rather than enabling advanced analytics.
Keywords:
Data Utilization, Digital Surveillance, Epidemiological SurveillanceReferences
Bauer, C., Ganslandt, T., Baum, B., Christoph, J., Engel, I., Löbe, M., Mate, S., Stäubert, S., Drepper, J., Prokosch, H.-U., & others. (2016). Integrated data repository toolkit (IDRT). Methods of Information in Medicine, 55(02), 125–135. https://doi.org/10.3414/ME15-01-0082
Bialke, M., Penndorf, P., Wegner, T., Bahls, T., Havemann, C., Piegsa, J., & Hoffmann, W. (2015). A workflow-driven approach to integrate generic software modules in a Trusted Third Party. Journal of Translational Medicine, 13(1), 176. https://doi.org/10.1186/s12967-015-0545-6
Chisha, Z., Larsen, D. A., Burns, M., Miller, J. M., Chirwa, J., Mbwili, C., Bridges, D. J., Kamuliwo, M., Hawela, M., Tan, K. R., & others. (2015). Enhanced surveillance and data feedback loop associated with improved malaria data in Lusaka, Zambia. Malaria Journal, 14(1), 222. https://doi.org/10.1186/s12936-015-0735-y
Costa-Santos, C., Neves, A. L., Correia, R., Santos, P., Monteiro-Soares, M., Freitas, A., Ribeiro-Vaz, I., Henriques, T. S., Rodrigues, P. P., Costa-Pereira, A., & others. (2021). COVID-19 surveillance data quality issues: a national consecutive case series. BMJ Open, 11(12), e047623. Retrieved from https://bmjopen.bmj.com/content/11/12/e047623.abstract
De Quirós, F. G. B., Otero, C., & Luna, D. (2018). Terminology services: standard terminologies to control health vocabulary. Yearbook of Medical Informatics, 27(01), 227–233. https://doi.org/10.1055/s-0038-1641200
Delgado, D., Wyss Quintana, F., Perez, G., Sosa Liprandi, A., Ponte-Negretti, C., Mendoza, I., & Baranchuk, A. (2020). Personal safety during the COVID-19 pandemic: realities and perspectives of healthcare workers in Latin America. International Journal of Environmental Research and Public Health, 17(8), 2798. https://doi.org/10.3390/ijerph17082798
Howes, R. E., Mioramalala, S. A., Ramiranirina, B., Franchard, T., Rakotorahalahy, A. J., Bisanzio, D., Gething, P. W., Zimmerman, P. A., & Ratsimbasoa, A. (2016). Contemporary epidemiological overview of malaria in Madagascar: operational utility of reported routine case data for malaria control planning. Malaria Journal, 15(1), 502. https://doi.org/10.1186/s12936-016-1556-3
Hung, Y. W., Hoxha, K., Irwin, B. R., Law, M. R., & Grépin, K. A. (2020). Using routine health information data for research in low-and middle-income countries: a systematic review. BMC Health Services Research, 20(1), 790. https://doi.org/10.1186/s12913-020-05660-1
Ivanković, D., Barbazza, E., Bos, V., Brito Fernandes, Ó., Jamieson Gilmore, K., Jansen, T., Kara, P., Larrain, N., Lu, S., Meza-Torres, B., & others. (2021). Features constituting actionable COVID-19 dashboards: descriptive assessment and expert appraisal of 158 public web-based COVID-19 dashboards. Journal of Medical Internet Research, 23(2), e25682. https://www.jmir.org/2021/2/e25682/
Jain, R., Sontisirikit, S., Iamsirithaworn, S., & Prendinger, H. (2019). Prediction of dengue outbreaks based on disease surveillance, meteorological and socio-economic data. BMC Infectious Diseases, 19(1), 272. https://doi.org/10.1186/s12879-019-3874-x
Jannot, A.-S., Burgun, A., Thervet, E., & Pallet, N. (2017). The diagnosis-wide landscape of hospital-acquired AKI. Clinical Journal of the American Society of Nephrology, 12(6), 874–884. https://doi.org/10.2215/CJN.10981016
Kazemi-Arpanahi, H., Moulaei, K., & Shanbehzadeh, M. (2020). Design and development of a web-based registry for Coronavirus (COVID-19) disease. Medical Journal of the Islamic Republic of Iran, 34, 68. https://doi.org/10.34171/mjiri.34.68
Kostkova, P., Saigí-Rubió, F., Eguia, H., Borbolla, D., Verschuuren, M., Hamilton, C., Azzopardi-Muscat, N., & Novillo-Ortiz, D. (2021). Data and digital solutions to support surveillance strategies in the context of the COVID-19 pandemic. Frontiers in Digital Health, 3, 707902. https://doi.org/10.3389/fdgth.2021.707902
Li, S., & Mackaness, W. A. (2015). A multi-agent-based, semantic-driven system for decision support in epidemic management. Health Informatics Journal, 21(3), 195–208. https://doi.org/10.1177/1460458213517704
Lin, C., Karlson, E. W., Canhao, H., Miller, T. A., Dligach, D., Chen, P. J., Perez, R. N. G., Shen, Y., Weinblatt, M. E., Shadick, N. A., & others. (2013). Automatic prediction of rheumatoid arthritis disease activity from the electronic medical records. PloS One, 8(8), e69932. https://doi.org/10.1371/journal.pone.0069932
MacIntyre, C. R., Chen, X., Kunasekaran, M., Quigley, A., Lim, S., Stone, H., Paik, H., Yao, L., Heslop, D., Wei, W., & others. (2023). Artificial intelligence in public health: the potential of epidemic early warning systems. Journal of International Medical Research, 51(3), 03000605231159335. https://doi.org/10.1177/03000605231159335
Mercado, C. E. G., Ekapirat, N., Dondorp, A. M., & Maude, R. J. (2017). An assessment of national surveillance systems for malaria elimination in the Asia Pacific. Malaria Journal, 16(1), 127. https://doi.org/10.1186/s12936-017-1774-3
Ohrt, C., Roberts, K. W., Sturrock, H. J. W., Wegbreit, J., Lee, B. Y., & Gosling, R. D. (2015). Information systems to support surveillance for malaria elimination. The American Journal of Tropical Medicine and Hygiene, 93(1), 145. https://doi.org/10.4269/ajtmh.14-0257
Pfeiffer, D. U., & Stevens, K. B. (2015). Spatial and temporal epidemiological analysis in the Big Data era. Preventive Veterinary Medicine, 122(1–2), 213–220. https://doi.org/10.1016/j.prevetmed.2015.05.012
Premaratne, R., Wickremasinghe, R., Ranaweera, D., Gunasekera, W. M. K. T. de A. W., Hevawitharana, M., Pieris, L., Fernando, D., & Mendis, K. (2019). Technical and operational underpinnings of malaria elimination from Sri Lanka. Malaria Journal, 18(1), 256. https://doi.org/10.1186/s12936-019-2886-8
Rajvanshi, H., Bharti, P. K., Nisar, S., Jain, Y., Jayswar, H., Mishra, A. K., Sharma, R. K., Saha, K. B., Shukla, M. M., Das, A., & others. (2020). Study design and operational framework for a community-based Malaria Elimination Demonstration Project (MEDP) in 1233 villages of district Mandla, Madhya Pradesh. Malaria Journal, 19(1), 410. https://doi.org/10.1186/s12936-020-03458-4
Shretta, R., Silal, S. P., Celhay, O. J., Mercado, C. E. G., Kyaw, S. S., Avancena, A., Fox, K., Zelman, B., Baral, R., White, L. J., & others. (2020). Malaria elimination transmission and costing in the Asia-Pacific: Developing an investment case. Wellcome Open Research, 4, 60. https://doi.org/10.12688/wellcomeopenres.14769.2
Talisuna, A., Yahaya, A. A., Rajatonirina, S. C., Stephen, M., Oke, A., Mpairwe, A., Diallo, A. B., Musa, E. O., Yota, D., Banza, F. M., & others. (2019). Joint external evaluation of the International Health Regulation (2005) capacities: current status and lessons learnt in the WHO African region. BMJ Global Health, 4(6), e001312. https://gh.bmj.com/content/4/6/e001312
Talmage, C. A., Coon, D. W., Dugger, B. N., Knopf, R. C., O’Connor, K. A., & Schofield, S. A. (2020). Social leisure activity, physical activity, and valuation of life: Findings from a longevity study. Activities, Adaptation & Aging, 44(1), 61–84. https://doi.org/10.1080/01924788.2019.1581026
Van Goethem, N., Vilain, A., Wyndham-Thomas, C., Deblonde, J., Bossuyt, N., Lernout, T., Rebolledo Gonzalez, J., Quoilin, S., Melis, V., & Van Beckhoven, D. (2020). Rapid establishment of a national surveillance of COVID-19 hospitalizations in Belgium. Archives of Public Health, 78(1), 121. https://doi.org/10.1186/s13690-020-00505-z
Van Mourik, M. S. M., Perencevich, E. N., Gastmeier, P., & Bonten, M. J. M. (2018). Designing surveillance of healthcare-associated infections in the era of automation and reporting mandates. Clinical Infectious Diseases, 66(6), 970–976. https://doi.org/10.1093/cid/cix835
van Mourik, M. S. M., van Rooden, S. M., Abbas, M., Aspevall, O., Astagneau, P., Bonten, M. J. M., Carrara, E., Gomila-Grange, A., de Greeff, S. C., Gubbels, S., & others. (2021). PRAISE: providing a roadmap for automated infection surveillance in Europe. Clinical Microbiology and Infection, 27, S3--S19. https://doi.org/10.1016/j.cmi.2021.02.028
Zhang, D., Yin, C., Zeng, J., Yuan, X., & Zhang, P. (2020). Combining structured and unstructured data for predictive models: a deep learning approach. BMC Medical Informatics and Decision Making, 20(1), 280. https://doi.org/10.1186/s12911-020-01297-6
License
Copyright (c) 2025 Ade Dita Puteri, Arif Mudi Priyanto, Raudhatun Nuzul ZA

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






