Trichome Morphology and Biotic Stress in Cayenne Pepper Under Organic Fertilizer Treatments
DOI:
10.29303/jppipa.v11i11.13056Published:
2025-11-25Downloads
Abstract
Trichomes play a role in protecting plants from herbivores and pathogens, and their formation can be influenced by nutrient availability and environmental factors. This study examined the effect of liquid organic fertilizer (POC) on the development of leaf trichomes in cayenne pepper (Capsicum frutescens) grown on ultisol soil in Tarakan, Indonesia. The experiment used a completely randomized design with seven fertilization treatments: control (P0), NPK (P1), and POC at concentrations of 5–15 g/L (P2–P6), each replicated four times. Leaf samples collected 45 days after transplanting were cleared, stained, and observed microscopically. Several types of trichomes were identified, with non-glandular forms observed more frequently than glandular ones, mainly located along the abaxial midrib and veins. Variation in trichome number and form appeared to increase in plants treated with higher POC concentrations (10–15 g/L). Occasional fungal structures were noted on some leaf surfaces, coinciding with the presence of glandular trichomes. These observations suggest that POC application may influence trichome development in cayenne pepper under field conditions, providing preliminary morphological information relevant to organic fertilization practices on marginal soils.
Keywords:
Biotic stress response, Capsicum frutescens, liquid organic fertilizer, trichome density, trichome morphologyReferences
Abdullah, U. H., Martunis, L., & Sansa, T. J. (2025). Correlation analysis between LOF dosage from cassava peel with stem height, number of leaves, and leaf width on cocoa seedlings (Theobroma cacao L.). Jurnal Penelitian Pendidikan IPA, 11(9), 321–329. https://doi.org/10.29303/jppipa.v11i9.12127
Arie, T. (2019). Fusarium diseases of cultivated plants: Control, diagnosis, and molecular and genetic studies. Journal of Pesticide Science, 44(4), 275–281. https://doi.org/10.1584/jpestics.J19-03
Asri, H. H., Razak, A., Syah, N., Diliarosta, S., & Sholichin, M. (2025). The effect of providing ultrafine nanobubbles (UFB) liquid organic NPK fertilizer on the growth of Pueraria javanica plants in ex-coal mining land areas. Jurnal Penelitian Pendidikan IPA, 11(3), 812–825. https://doi.org/10.29303/jppipa.v11i3.10572
Astiti, A., Sutikno, & Utaminingsih. (2021). Morfologi trikoma mahkota dan kelopak beberapa varietas bunga krisan (Chrysanthemum morifolium Ramat.). Al-Hayat: Journal of Biology and Applied Biology, 4(2), 87–95. https://doi.org/10.21580/ah.v3i1.6861
Baird, A. S., Medeiros, C. D., Caringella, M. A., Bowers, J., Hii, M., Liang, J., Matsuda, J., Pisipati, K., Pohl, C., Simon, B., Tagaryan, S., Buckley, T. N., & Sack, L. (2024). How and why do species break a developmental trade-off? Elucidating the association of trichomes and stomata across species. American Journal of Botany, 111(5), e16328. https://doi.org/10.1002/ajb2.16328
Bajguz, A., Chmur, M., & Gruszka, D. (2020). Comprehensive overview of the brassinosteroid biosynthesis pathways: Substrates, products, inhibitors, and connections. Frontiers in Plant Science, 11, 1034. https://doi.org/10.3389/fpls.2020.01034
Balázs, V., Helyes, L., Daood, H. G., Pék, Z., Neményi, A., Égei, M., & Takács, S. (2023). Effect of fertilization level on the yield, carotenoids, and phenolic content of orange- and purple-fleshed sweet potato. Horticulturae, 9(5), 523. https://doi.org/10.3390/horticulturae9050523
Bergman, M. E., Kortbeek, R. W. J., Gutensohn, M., &Dudareva, N. (2024). Plant terpenoid biosynthetic network and its multiple layers of regulation. Progress in Lipid Research, 95, 101287. https://doi.org/10.1016/j.plipres.2024.101287
Bilkova, I., Kjaer, A., van der Kooy, F., & Lommen, W. J. W. (2016). Effects of N fertilization on trichome density, leaf size, and artemisinin production in Artemisia annua leaves. Acta Horticulturae, 1125, 369–376. https://doi.org/10.17660/ActaHortic.2016.1125.48
Blakeslee, J. J., Rossi, T. S., &Kriechbaumer, V. (2019). Auxin biosynthesis: Spatial regulation and adaptation to stress. Journal of Experimental Botany, 70(19), 5041–5049. https://doi.org/10.1093/jxb/erz283
Badan Pusat Statistik Kalimantan Utara. (2021). Kota Tarakan dalam angka. Retrieved from http://kalimantanutara.bps.go.id
Brown, P. H., Zhao, F. J., & Dobermann, A. (2022). What is a plant nutrient? Changing definitions to advance science and innovation in plant nutrition. Plant and Soil, 476, 11–23. https://doi.org/10.1007/s11104-021-05171-w
Campos, M. L., de Almeida, M., Rossi, M. L., Martinelli, A. P., Litholdo Junior, C. G., Figueira, A., Rampelotti-Ferreira, F. T., Vendramim, J. D., Benedito, V. A., & Peres, L. E. P. (2009). Brassinosteroids interact negatively with jasmonates in the formation of anti-herbivory traits in tomato. Journal of Experimental Botany, 60(15), 4347–4361. https://doi.org/10.1093/jxb/erp270
Celedon, J. M., Whitehill, J. G. A., Madilao, L. L., & Bohlmann, J. (2020). Gymnosperm glandular trichomes: Expanded dimensions of the conifer terpenoid defense system. Scientific Reports, 10, 12464. https://doi.org/10.1038/s41598-020-69373-5
Chairiyah, N., Harijati, N., &Mastuti, R. (2023). The relationship of glucomannan, oxalate, and crystal development in porang tuber (Amorphophallus muelleri Blume). Journal of Experimental Life Sciences, 13(1), 1–11. https://doi.org/10.21776/ub.jels.2023.013.01.01
Chen, L., Li, X., Zhang, J., He, T., Huang, J., Zhang, Z., Wang, Y., Hafeez, M., Zhou, S., Ren, X., Hou, Y., & Lu, Y. (2021). Comprehensive metabolome and volatilome analyses in eggplant and tomato reveal their differential responses to Tuta absoluta infestation. Frontiers in Plant Science, 12, 757230. https://doi.org/10.3389/fpls.2021.757230
Choi, H. W. (2024). From photosynthesis to hormone biosynthesis in plants. Plant Pathology Journal, 40(2), 99–105. https://doi.org/10.5423/PPJ.RW.01.2024.0006
Choudhary, A., Kumar, A., Kumar, U., Choudhary, R., Kumar, R., Jat, R., Nidhibahen, P., Hatamleh, A. A., Al-Dosary, M. A., Al-Wasel, Y. A., Rajagopal, R., & Ravindran, B. (2022). Various fertilization managements influence the flowering attributes, yield response, biochemical activity, and soil nutrient status of chrysanthemum (Chrysanthemum morifolium Ramat.). Sustainability, 14(8), 4561. https://doi.org/10.3390/su14084561
D'Alessandro, S., &Havaux, M. (2019). Sensing β-carotene oxidation in photosystem II to master plant stress tolerance. New Phytologist, 223(4), 1776–1783. https://doi.org/10.1111/nph.15924
Dalin, P., Ågren, J., Björkman, C., Huttunen, P., & Kärkkäinen, K. (2008). Leaf trichome formation and plant resistance to herbivory. In Induced plant resistance to herbivory (pp. 89–105). Dordrecht: Springer. https://doi.org/10.1007/978-1-4020-8182-8_4
Dewi, V. P., Hindun, I., & Wahyuni, S. (2015). Studi trikoma daun pada famili Solanaceae sebagai sumber belajar biologi. Jurnal Pendidikan Biologi Indonesia, 1(2), 209–218. https://doi.org/10.22219/jpbi.v1i2.3332
Dimopoulos, N., Guo, Q., Liu, L., Nolan, M., Das, R., Garcia-de Heer, L., Mieog, J. C., Barkla, B. J., & Kretzschmar, T. (2025). An in vitro phytohormone survey reveals concerted regulation of the cannabis glandular trichome disc cell proteome. Plants, 14(5), 694. https://doi.org/10.3390/plants14050694
Dupont, P. Y., Eaton, C. J., Wargent, J. J., Fechtner, S., Solomon, P., Schmid, J., Day, R. C., Scott, B., & Cox, M. P. (2015). Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. New Phytologist, 208(4), 1227–1240. https://doi.org/10.1111/nph.13614
Eckert, C., Xu, W., Xiong, W., Lynch, S., Ungerer, J., Tao, L., Gill, R., Maness, P.-C., & Yu, J. (2014). Ethylene-forming enzyme and bioethylene production. Biotechnology for Biofuels, 7, 33. https://doi.org/10.1186/1754-6834-7-33
El-Desouki, Z., Xia, H., Abouseif, Y., Cong, M., Zhang, M., Riaz, M., Moustafa-Farag, M., & Jiang, C. (2024). Improved chlorophyll fluorescence, photosynthetic rate, and plant growth of Brassica napus L. after co-application of biochar and phosphorus fertilizer in acidic soil. Journal of Plant Nutrition and Soil Science, 187, 260–273. https://doi.org/10.1002/jpln.202300052
Engene, N., Rottacker, E. C., Kaštovský, J., Byrum, T., Choi, H., Ellisman, M. H., Komárek, J., & Gerwick, W. H. (2012). Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. International Journal of Systematic and Evolutionary Microbiology, 62, 1171–1178. https://doi.org/10.1099/ijs.0.033761-0
Fàbregas, N., &Fernie, A. R. (2021). The interface of central metabolism with hormone signaling in plants. Current Biology, 31(23), R1535–R1548. https://doi.org/10.1016/j.cub.2021.09.070
Fambrini, M., & Pugliesi, C. (2019). The dynamic genetic-hormonal regulatory network controlling the trichome development in leaves. Plants (Basel), 8(8), 253. https://doi.org/10.3390/plants8080253
Fanciullino, A. L., Bidel, L. P. R., & Urban, L. (2014). Carotenoid responses to environmental stimuli: Integrating redox and carbon controls into a fruit model. Plant, Cell & Environment, 37, 273–289. https://doi.org/10.1111/pce.12153
Febriyani, H., Puspitawati, R. P., & Bashri, A. (2022). Variation in anatomical and secretory structure of Annona species has potential as medicinal plant. LenteraBio: Berkala Ilmiah Biologi, 11(3), 575–585. https://doi.org/10.26740/lenterabio.v11n3.p575-585
Gao, P., Zhang, T., Lei, X., Cui, X., Lu, Y., Fan, P., Long, S., Huang, J., Gao, J., Zhang, Z., & Zhang, H. (2023). Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers. Journal of Integrative Agriculture, 22(7), 2221–2232. https://doi.org/10.1016/j.jia.2023.02.037
Gao, J., Zhuang, S., & Zhang, W. (2024). Advances in plant auxin biology: Synthesis, metabolism, signaling, interaction with other hormones, and roles under abiotic stress. Plants, 13(17), 2523. https://doi.org/10.3390/plants13172523
Glas, J. J., Schimmel, B. C., Alba, J. M., Escobar-Bravo, R., Schuurink, R. C., & Kant, M. R. (2012). Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. International Journal of Molecular Sciences, 13, 17077–17103. https://doi.org/10.3390/ijms131217077
Grishkan, I. (2024). Soil as a source of pathogenic fungal species for public health. Encyclopedia, 4(3), 1163–1172. https://doi.org/10.3390/encyclopedia4030075
Han, G., Li, Y., Yang, Z., Wang, C., Zhang, Y., & Wang, B. (2022). Molecular mechanisms of plant trichome development. Frontiers in Plant Science, 13, 910228. https://doi.org/10.3389/fpls.2022.910228
Hapsari, N. A. P., & Suparno, S. (2023). The effect of concentration variation of liquid organic fertilizer application on the growth of mustard plants. Jurnal Penelitian Pendidikan IPA, 9(7), 4894–4900. https://doi.org/10.29303/jppipa.v9i7.2837
Haryanta, D., Sa’adah, T. T., &Thohiron, M. (2022). Physico-chemical characterization of liquid organic fertilizer from urban organic waste. Chemical Engineering Transactions, 96, 457–462. https://doi.org/10.3303/CET2296077
Hashimoto, H., Uragami, C., & Cogdell, R. J. (2016). Carotenoids and photosynthesis. Subcellular Biochemistry, 79, 111–139. https://doi.org/10.1007/978-3-319-39126-7_4
Havko, N. E., Major, I. T., Jewell, J. B., Attaran, E., Browse, J., & Howe, G. A. (2016). Control of carbon assimilation and partitioning by jasmonate: An accounting of growth-defense tradeoffs. Plants (Basel), 5(1), 7. https://doi.org/10.3390/plants5010007
Hayat, S., & Ahmad, A. (2007). Salicylic acid: Biosynthesis, metabolism and physiological role in plants. In S. Hayat & A. Ahmad (Eds.), Salicylic acid: A plant hormone (pp. 1–14). Dordrecht: Springer. https://doi.org/10.1007/1-4020-5184-0_1
He, M., Qin, C. X., Wang, X., & Ding, N. Z. (2020). Plant unsaturated fatty acids: Biosynthesis and regulation. Frontiers in Plant Science, 11, 390. https://doi.org/10.3389/fpls.2020.00390
Hedden, P. (2020). The current status of research on gibberellin biosynthesis. Plant and Cell Physiology, 61(11), 1832–1849. https://doi.org/10.1093/pcp/pcaa092
Herjayanti, N., Sulistiyaningsih, Y. C., Megia, R., & Hartana, A. (2022). Anatomi daun beberapa jenis Biophytum (Oxalidaceae) di Indonesia berdasarkan letak stomata dan bentuk dinding sel epidermis. Floribunda, 7(1), 30–35. https://doi.org/10.32556/floribunda.v7i(1).2022.373
Herwidyarti, K. H., Ratih, S., & Sembodo, D. R. J. (2013). Keparahan penyakit antraknosa pada cabai (Capsicum annuum L.) dan berbagai jenis gulma. Jurnal Agrotek Tropika, 1, 102–106. https://doi.org/10.23960/jat.v1i1.1925
Hochmuth, G. J., & Hanlon, E. (2022). Plant tissue analysis and interpretation for vegetable crops in Florida: HS964/EP081 rev. 11/2022. EDIS, 2022(6). https://doi.org/10.32473/edis-ep081-2004
Huchhellman, A., Boutry, M., & Hachez, C. (2017). Plant glandular trichomes: Natural cell factories of high biotechnological interest. Plant Physiology, 175, 6–22. https://doi.org/10.1104/pp.17.00727
Isnawan, B. H., & Mubarok, K. (2014). Efektifitas penginduksi resistensi dan biopestisida terhadap penyakit bercak daun Cercospora dan antraknosa pada cabai (Capsicum annuum L.). Planta Tropika, 2(2), 106–114. https://doi.org/10.18196/pt.2014.030.106-114
Jama-Rodzeńska, A., Chohura, P., Gałka, B., Szuba-Trznadel, A., Falkiewicz, A., &Białkowska, M. (2022). Effect of different doses of Phosgreen fertilization on chlorophyll, K, and Ca content in butterhead lettuce (Lactuca sativa L.) grown in peat substrate. Agriculture, 12(6), 788. https://doi.org/10.3390/agriculture12060788
Ji, R., Dong, G., Shi, W., & Min, J. (2017). Effects of liquid organic fertilizers on plant growth and rhizosphere soil characteristics of chrysanthemum. Sustainability, 9(5), 841. https://doi.org/10.3390/su9050841
Julianti, M. A., Darmanti, S., & Haryanti, S. (2024). Karakteristik stomata dan trikoma lima spesies gulma familia Asteraceae di Waduk Pendidikan Universitas Diponegoro. Buletin Anatomi dan Fisiologi, 9(1), 39–47. https://doi.org/10.14710/baf.9.1.2024.39-47
Kabir, N., Wahid, S., Rehman, S. U., &Qanmber, G. (2024). The intricate world of trichome development: From signaling pathways to transcriptional regulation. Environmental and Experimental Botany, 217, 105549. https://doi.org/10.1016/j.envexpbot.2023.105549
Kalicharan, B., Naidoo, Y., Nakhooda, M., &Dewir, Y. H. (2018). Micromorphological evaluation of the foliar trichomes of field-grown and micropropagated Stachys natalensis Hochst. (Lamiaceae). South African Journal of Botany, 119, 369–376. https://doi.org/10.1016/j.sajb.2018.08.025
Kamala, J. P. D., Ravindra, M. A., Kempraj, V., Roy, T. K., Shivashankara, K. S., & Singh, T. H. (2018). Morphological diversity of trichomes and phytochemicals in wild and cultivated eggplant species. Indian Journal of Horticulture, 75(2), 265–272. https://doi.org/10.5958/0974-0112.2018.00045.2
Kang, J., McRoberts, J. E., Jones, D. A., & Howe, G. A. (2014). The flavonoid biosynthetic enzyme chalcone isomerase modulates terpenoid production in glandular trichomes of tomato. Plant Physiology, 134, 108–112. https://doi.org/10.1104/pp.113.233395
Karabourniotis, G., Liakopoulos, G., Nikolopoulos, D., & Bresta, P. (2020). Protective and defensive roles of non-glandular trichomes against multiple stresses: Structure–function coordination. Journal of Forestry Research, 31, 1–12. https://doi.org/10.1007/s11676-019-01034-4
Kennedy, G. G. (2003). Tomato, pests, parasitoids, and predators: Tritrophic interactions involving the genus Lycopersicon. Annual Review of Entomology, 48, 51–72. https://doi.org/10.1146/annurev.ento.48.091801.112733
Khan, R. A., Mohammad, H., & Hurrah, I. M. (2021). Transcriptional regulation of trichome development in plants: An overview. Proceedings of the Indian National Science Academy, 87, 36–47. https://doi.org/10.1007/s43538-021-00017-6
Khourchi, S., Oukarroum, A., Tika, A., El Youssfi, L., Choukr-Allah, R., &Hirich, A. (2022). Polyphosphate application influences morpho-physiological root traits involved in P acquisition and durum wheat growth performance. BMC Plant Biology, 22, 309. https://doi.org/10.1186/s12870-022-03683-w
Kiba, T., Takebayashi, Y., Kojima, M., & Sakakibara, H. (2019). Sugar-induced de novo cytokinin biosynthesis contributes to Arabidopsis growth under elevated CO₂. Scientific Reports, 9(1), 7765. https://doi.org/10.1038/s41598-019-44185-4
Kieber, J. J., & Schaller, G. E. (2014). Cytokinins. The Arabidopsis Book, 12, e0168. https://doi.org/10.1199/tab.0168
Kim, H. J., Han, J.-H., Kim, S., Lee, H. R., Shin, J.-S., Kim, J.-H., Cho, J., Kim, Y. H., Lee, H. J., Kim, B.-D., & Choi, D. (2011). Trichome density of main stem is tightly linked to PepMoV resistance in chili pepper (Capsicum annuum L.). Theoretical and Applied Genetics, 122, 1051–1058. https://doi.org/10.1007/s00122-010-1510-7
Kim, H. J., Seo, E. Y., Kim, J. H., Cheong, H. J., Kang, B. C., & Choi, D. (2012). Morphological classification of trichomes associated with possible biotic stress resistance in the genus Capsicum. Plant Pathology Journal, 28(1), 107–113. https://doi.org/10.5423/PPJ.NT.12.2011.0245
Knazicka, Z., Galik, B., Novotna, I., Arvay, J., Fatrcova-Sramkova, K., Kacaniova, M., Mlcek, J., Kovacikova, E., Mixtajova, E., Jurikova, T., Ivanisova, E., Kolesarova, A., & Duranova, H. (2025). Enhancing commercial gourmet oil quality: The role of dried cayenne pepper red (Capsicum annuum L.) as a natural additive. Molecules, 30(4), 927. https://doi.org/10.3390/molecules30040927
Kortbeek, R. W. J., Xu, J., Ramirez, A., Spyropoulou, E., Diergaarde, P., Otten-Bruggeman, I., de Both, M., Nagel, R., Schmidt, A., Schuurink, R. C., & Bleeker, P. M. (2016). Engineering of tomato glandular trichomes for the production of specialized metabolites. Methods in Enzymology, 576, 305–331. https://doi.org/10.1016/bs.mie.2016.02.014
Kumari, S. (2020). Trichome size and structure in sunflower (Helianthus annuus L.) leaf under nitrogen deficiency. International Journal of Current Microbiology and Applied Sciences, 9(3), 2318–2322. https://doi.org/10.20546/ijcmas.2020.903.263
Li, J., Wang, X., Jiang, R., Dong, B., Fang, S., Li, Q., Lv, Z., & Chen, W. (2021). Phytohormone-based regulation of trichome development. Frontiers in Plant Science, 12, 734776. https://doi.org/10.3389/fpls.2021.734776
Li, C., Xu, M., Cai, X., Han, Z., Si, J., & Chen, D. (2022). Jasmonate signaling pathway modulates plant defense, growth, and their trade-offs. International Journal of Molecular Sciences, 23(7), 3945. https://doi.org/10.3390/ijms23073945
Liu, L., Li, W., Li, X., Sun, X., & Yuan, Q. (2019). Constructing an efficient salicylate biosynthesis platform by Escherichia coli chromosome integration. Journal of Biotechnology, 298, 5–10. https://doi.org/10.1016/j.jbiotec.2019.04.004
Liu, J., Wang, H., Liu, M., Liu, J., Liu, S., Cheng, Q., & Shen, H. (2021). Hairiness gene regulates multicellular, non-glandular trichome formation in pepper species. Frontiers in Plant Science, 12, 784755. https://doi.org/10.3389/fpls.2021.784755
Liu, Y., Lan, X., Hou, H., Ji, J., Liu, X., & Lv, Z. (2024). Multifaceted ability of organic fertilizers to improve crop productivity and abiotic stress tolerance: Review and perspectives. Agronomy, 14(6), 1141. https://doi.org/10.3390/agronomy14061141
Lv, Z. Y., Sun, W. J., Jiang, R., Chen, J. F., Ying, X., Zhang, L., & Chen, W. S. (2021). Phytohormones jasmonic acid, salicylic acid, gibberellins, and abscisic acid are key mediators of plant secondary metabolites. World Journal of Traditional Chinese Medicine, 7(3), 307–325. https://doi.org/10.4103/wjtcm.wjtcm_20_21
Lv, R., Elsabagh, M., Obitsu, T., Sugino, T., Kurokawa, Y., & Kawamura, K. (2022). Changes of photosynthetic pigments and phytol content at different levels of nitrogen fertilizer in Italian ryegrass fresh herbage and hay. Grassland Science, 68, 53–59. https://doi.org/10.1111/grs.12335
Machín, A., Cotto, M., Ducongé, J., & Márquez, F. (2023). Artificial photosynthesis: Current advancements and prospects. Biomimetics (Basel), 8(3), 298. https://doi.org/10.3390/biomimetics8030298
Mandal, R., & Dutta, G. (2020). From photosynthesis to biosensing: Chlorophyll proves to be a versatile molecule. Sensors International, 1, 100058. https://doi.org/10.1016/j.sintl.2020.100058
Mappanganro, N., Linggarweni, B. I., & Nirmawati, N. (2023). Utilization of water spinach harvest waste as liquid organic fertilizer and compost on the growth and yield of large chili plants (Capsicum annuum L.). Jurnal Penelitian Pendidikan IPA, 9(11), 10166–10172. https://doi.org/10.29303/jppipa.v9i11.5476
Martínez-Alcántara, B., Martínez-Cuenca, M., Bermejo, A., & Oliver, A. (2016). Liquid organic fertilizers for sustainable agriculture: Nutrient uptake of organic versus mineral fertilizers in citrus trees. Plos One, 11(10), e0161619. https://doi.org/10.1371/journal.pone.0161619
Matías-Hernández, L., Aguilar-Jaramillo, A. E., Aiese-Cigliano, R., Sanseverino, W., &Pelaz, S. (2016). Flowering and trichome development share hormonal and transcription factor regulation. Journal of Experimental Botany, 67(5), 1209–1219. https://doi.org/10.1093/jxb/erv534
Mishra, B. S., Sharma, M., & Laxmi, A. (2022). Role of sugar and auxin crosstalk in plant growth and development. Physiologia Plantarum, 174(1), e13546. https://doi.org/10.1111/ppl.13546
Moekasan, T. K., & Prabaningrum, L. (2012). Penggunaan rumah kasa untuk mengatasi serangan organism pengganggu tumbuhan pada tanaman cabai merah di dataran rendah. Jurnal Hortikultura, 22(1), 66–76. https://doi.org/10.21082/jhort.v22n1.2012.p65-75
Mroue, S., Simeunovic, A., & Robert, H. S. (2018). Auxin production as an integrator of environmental cues for developmental growth regulation. Journal of Experimental Botany, 69(2), 201–212. https://doi.org/10.1093/jxb/erx259
Mthiyane, P., Aycan, M., & Mitsui, T. (2024). Integrating biofertilizers with organic fertilizers enhances photosynthetic efficiency and upregulates chlorophyll-related gene expression in rice. Sustainability, 16(21), 9297. https://doi.org/10.3390/su16219297
Mumtazah, T., Rahmatan, H., Muhibbuddin, Samingan, & Djufri. (2025). Growth response of mung bean (Vigna radiata L.) to biochar and liquid organic fertilizer from Samanea saman (Jacq.) Merr leaves combined with bone meal. Jurnal Penelitian Pendidikan IPA, 11(9), 128–134. https://doi.org/10.29303/jppipa.v11i9.12240
Mursyidin, A. H., & Mulyaningsih, T. (2024). Karakterisasi morfologi dan anatomi daun cabai rawit (Capsicum frutescens L.) yang terinfeksi Cercospora capsici di Lombok Timur. Jurnal Hama dan Penyakit Tumbuhan Tropika, 12(3), 173–179. https://doi.org/10.21776/ub.jurnalhpt.2024.012.3.5
Nasirudin, N., Rukmini, D., Prihandoko, D., Alatas, M., & Sedik, Y. Y. (2023). Processing of leachate water into liquid fertilizer (POC) for increasing the economy of chrysanthemum farmers. Jurnal Penelitian Pendidikan IPA, 9(5), 2403–2408. https://doi.org/10.29303/jppipa.v9i5.3616
Ning, P., Wang, J., Zhou, Y., Gao, L., Wang, J., & Gong, C. (2016). Adaptional evolution of trichome in Caragana korshinskii to natural drought stress on the Loess Plateau, China. Ecology and Evolution, 6(11), 3786–3795. https://doi.org/10.1002/ece3.2157
Nguyen, T. H., Goossens, A., &Lacchini, E. (2022). Jasmonate: A hormone of primary importance for plant metabolism. Current Opinion in Plant Biology, 67, 102197. https://doi.org/10.1016/j.pbi.2022.102197
Olatunji, T. L., & Afolayan, A. J. (2019). Comparison of nutritional, antioxidant vitamins, and capsaicin contents in Capsicum annuum and C. frutescens. International Journal of Vegetable Science, 26(2), 190–207. https://doi.org/10.1080/19315260.2019.1629519
Pane, E., Sihotang, S., Sitompul, M. Y. F., Indrawaty, A., Mariana, M., & Qohar, A. F. (2023). Provision of POC coconut water and tea dregs compost on plant growth and production. Jurnal Penelitian Pendidikan IPA, 9(9), 7434–7438. https://doi.org/10.29303/jppipa.v9i9.4984
Pérez-Llorca, M., Muñoz, P., Müller, M., &Munné-Bosch, S. (2019). Biosynthesis, metabolism and function of auxin, salicylic acid and melatonin in climacteric and non-climacteric fruits. Frontiers in Plant Science, 10, 136. https://doi.org/10.3389/fpls.2019.00136
Ren, F., Zhang, J., Ding, L., Zhang, R., Li, F., Li, X., Zhong, T., Yin, M., Yang, R., Tian, P., Du, L., Gan, K., Yong, T., Li, Q., & Liu, X. (2024). Organic fertilizer increases pumpkin production by improving soil fertility. Frontiers in Plant Science, 15, 1467931. https://doi.org/10.3389/fpls.2024.1467931
Rezazadeh, A., Hamishehkar, H., Ehsani, A., Ghasempour, Z., &Moghaddas Kia, E. (2023). Applications of capsaicin in the food industry: Functionality, utilization, and stabilization. Critical Reviews in Food Science and Nutrition, 63(19), 4009–4025. https://doi.org/10.1080/10408398.2021.1997904
Riwu Kaho, U. J., Naisanu, J., & Raga, H. A. (2025). Tomato plant production (Lycopersicum esculentum, Mill) due to main branch pruning and GDM liquid organic fertilizer (POC) concentration. Jurnal Penelitian Pendidikan IPA, 11(8), 132–140. https://doi.org/10.29303/jppipa.v11i8.12436
Rodolfi, M., Barbanti, M., Giordano, C., Rinaldi, M., Fabbri, A., Pretti, L., Casolari, R., Beghe, D., Petruccelli, R., & Ganino, T. (2021). The effect of different organic fertilization on physiological and chemical characteristics in hop (Humulus lupulus L., cv. Cascade) leaves and cones. Applied Sciences, 11, 6778. https://doi.org/10.3390/app11156778
Rodríguez, E., Porcel, M., Lara, L., Cabello, T., Gámez, M., Navarro, L., Domingo, A., Burguillo, F. J., & Del Mar Téllez, M. (2024). Role of eggplant trichome in whitefly oviposition and its relevance to biological control under greenhouse conditions. Scientific Reports, 14(1), 22718. https://doi.org/10.1038/s41598-024-73327-6
Rosadi, N. A., & Catharina, T. S. (2022). Effect of fish water waste liquid organic fertilizer on strawberry flowering (Fragaria sp.). Jurnal Penelitian Pendidikan IPA, 8(Special Issue), 96–100. https://doi.org/10.29303/jppipa.v8iSpecialIssue.2475
Rusdiyana, R., Indriyanti, D. R., Marwoto, P., Iswari, R. S., & Cahyono, E. (2022). The influence of liquid organic fertilizer from peanut and banana peels toward vegetative growth of spinach. Jurnal Penelitian Pendidikan IPA, 8(2), 528–533. https://doi.org/10.29303/jppipa.v8i2.1331
Saini, S., Sharma, I., & Pati, P. K. (2015). Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Frontiers in Plant Science, 6, 950. https://doi.org/10.3389/fpls.2015.00950
Seo, M., & Marion-Poll, A. (2019). Abscisic acid metabolism and transport. In Advances in Botanical Research (Vol. 92, pp. 1–49). Academic Press. https://doi.org/10.1016/bs.abr.2019.04.004
Silva, A. P. S. D., Alencar, A. A. S. D., Sudré, C. P., Araújo, M. S. B. D., & Lobato, A. K. d. S. (2024). Brassinosteroids: Relevant evidence related to mitigation of abiotic and biotic stresses in plants. Agronomy, 14(4), 840. https://doi.org/10.3390/agronomy14040840
Sitorus, E., Sihombing, P., Panataria, L. R., & Saragih, M. K. (2024). The effect of NASA liquid organic fertilizer and chicken manure on the growth of sweet corn plants (Zea mays saccharata Sturt). Jurnal Penelitian Pendidikan IPA, 10(8), 4551–4560. https://doi.org/10.29303/jppipa.v10i8.7530
Stan, T., Munteanu, N., Teliban, G.-C., Cojocaru, A., &Stoleru, V. (2021). Fertilization management improves the yield and capsaicinoid content of chili peppers. Agriculture, 11(2), 181. https://doi.org/10.3390/agriculture11020181
Sun, T., Rao, S., Zhou, X., & Li, L. (2022). Plant carotenoids: Recent advances and future perspectives. Molecular Horticulture, 2, 3. https://doi.org/10.1186/s43897-022-00023-2
Swapnil, P., Meena, M., Singh, S. K., Dhuldhaj, U. P., Harish, &Marwal, A. (2021). Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. Current Plant Biology, 27, 100203. https://doi.org/10.1016/j.cpb.2021.100203
Talebi, S. H., Nohooji, M. G., Yarmohammadi, M., Khani, M., & Matsyura, A. (2019). Effect of altitude on essential oil composition in three Nepeta species (N. sessilifolia, N. heliotropifolia, N. fissa). Mediterranean Botany, 40, 81–93. https://doi.org/10.5209/MBOT.59730
Tanzerina, N., Sibarani, S., Aminasih, N., Junaidi, E., & Juswardi, J. (2025). Anatomy and structure secretary Hodgsonia macrocarpa (Blume Cogn.) as a traditional medicinal plant of the Besemah tribe for anti-infective and degenerative diseases in Lahat District, South Sumatra. Jurnal Penelitian Pendidikan IPA, 11(5), 294–303. https://doi.org/10.29303/jppipa.v11i5.11066
Tambaru, E., Paembonan, S. A., Ura, R., & Tuwo, M. (2019). Analisis anatomi dan trikoma tanaman obat Dandang Gendis (Clinacanthus nutans (Burm.f.) Lindau). Jurnal Ilmu Alam dan Lingkungan, 10(1), 35–41. https://doi.org/10.20956/jal.v10i1.6556
Vaičiulytė, V., Ložienė, K., &Sivicka, I. (2022). Effect of organic matter fertilizers on the composition of volatiles, morphometrical and anatomical parameters of essential oil-bearing Thymus × citriodorus cultivated in open field conditions. Horticulturae, 8(10), 917. https://doi.org/10.3390/horticulturae8100917
Wang, X., Shen, C., Meng, P., Tan, G., & Lv, L. (2021). Analysis and review of trichomes in plants. BMC Plant Biology, 21, 70. https://doi.org/10.1186/s12870-021-02840-x
Watts, S., &Kariyat, R. (2021). Morphological characterization of trichomes shows enormous variation in shape, density, and dimensions across the leaves of 14 Solanum species. AoB Plants, 13(6), 1–31. https://doi.org/10.1093/aobpla/plab071
Wei, Y. T., Bao, Q. X., Shi, Y. N., Mu, X. R., Wang, Y. B., Jiang, J. H., Yu, F. H., & Meng, L. S. (2025). Trichome development of systemic leaves is regulated by a nutrient sensor-relay mechanism within mature leaves. Science Advances, 11(6), eadq5820. https://doi.org/10.1126/sciadv.adq5820
Werker, E. (2000). Trichome diversity and development. Advances in Botanical Research, 31, 1–35. https://doi.org/10.1016/S0065-2296(00)31005-9
Xiao, K., Mao, X., Lin, Y., Xu, H., Zhu, Y., Cai, Q., Xie, H., & Zhang, J. (2017). Trichome, a functional diversity phenotype in plants. Molecular Biology, 6, 183. https://doi.org/10.4172/2168-9547.1000183
Yang, C., & Ye, Z. (2013). Trichomes as models for studying plant cell differentiation. Cellular and Molecular Life Sciences, 70(11), 1937–1948. https://doi.org/10.1007/s00018-012-1147-6
Yuan, Y., Xu, X., Luo, Y., Gong, Z., Hu, X., Wu, M., Liu, Y., Yan, F., Zhang, X., Zhang, W., Tang, Y., Feng, B., Li, Z., Jiang, C. Z., & Deng, W. (2021). R2R3 MYB-dependent auxin signalling regulates trichome formation, and increased trichome density confers spider mite tolerance on tomato. Plant Biotechnology Journal, 19, 138–152. https://doi.org/10.1111/pbi.13448
Yuliany, E. H., Sarno, S., & Hanum, L. (2021). Studi trikoma daun tumbuhan peneduh sebagai sumber belajar biologi [Study of shade plant leaves trichomes as biology learning resources]. Didaktika Biologi: Jurnal Penelitian Pendidikan Biologi, 5(2), 93–103. https://doi.org/10.32502/dikbio.v5i2.4398
Yusuf, M. I., Mustofa, A., & Cintamulya, I. (2025). The variation of the Solanaceae family trichomes found in the Cendana Hill, Sedan District, Rembang Regency. Inornatus: Biology Education Journal, 5(2), 1–13. https://doi.org/10.30862/inornatus.v5i2.840
Zeiner, M., Fiedler, H., Juranović, C., Cindrić, I., Nemet, I., Toma, D., &Habinovec, I. (2023). Preliminary study of pepper types based on multielement content combined with chemometrics. Foods, 12(16), 3132. https://doi.org/10.3390/foods12163132
Zhang, Y., Song, H., Wang, X., Zhou, X., Zhang, K., Chen, X., Liu, J., Han, J., & Wang, A. (2020). The roles of different types of trichomes in tomato resistance to cold, drought, whiteflies, and Botrytis. Agronomy, 10(3), 411. https://doi.org/10.3390/agronomy10030411
Zhang, A., Liu, Y., Yu, C., Huang, L., Wu, M., Wu, J., & Gan, Y. (2020). Zinc finger protein 1 (ZFP1) is involved in trichome initiation in Arabidopsis thaliana. Agriculture, 10(12), 645. https://doi.org/10.3390/agriculture10120645
Zhou, Z., Zhang, S., Jiang, N., Xiu, W., Zhao, J., & Yang, D. (2022). Effects of organic fertilizer incorporation practices on crop yield, soil quality, and soil fauna feeding activity in the wheat–maize rotation system. Frontiers in Environmental Science, 10, 1058071. https://doi.org/10.3389/fenvs.2022.1058071
License
Copyright (c) 2025 Nurul Chairiyah, Aditya Murtilaksono, Nurjannah, Muh. Adiwena, Muttaqien, Siti Agustia Lastari

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






