Potential Development of Green Chemistry Teaching Materials Based on Environmental and Sustainability Issues
DOI:
10.29303/jppipa.v11i11.13099Published:
2025-11-25Downloads
Abstract
This study aims to explore the potential development of green chemistry-based teaching materials integrated with local environmental and sustainability issues in West Kalimantan Province for students of the Chemistry Education Study Program, Universitas Muhammadiyah Pontianak (UMP). The research adopts a descriptive-qualitative approach focusing on the identification of curriculum opportunities, environmental context, and green chemistry principles implementation aligned with Education for Sustainable Development (ESD) and Outcome-Based Education (OBE). Data were collected through document analysis (curriculum review, environmental reports), interviews with lecturers and students, and literature analysis of regional environmental challenges. The results indicate that the local environmental issues (peatland degradation, river pollution, and plastic waste) are relevant to be integrated into chemistry teaching materials. Furthermore, 82.2% of lecturers and 88.6% of students express the need for context-based green chemistry materials emphasizing sustainable local resources. The study concludes that UMP’s chemistry curriculum holds strong potential to develop innovative, environmentally contextualized teaching materials promoting sustainability literacy among students.
Keywords:
Environmental Green chemistry Sustainability issues Teaching material developmentReferences
Abdussyukur, N. F., Saat, R. M., & Alias, N. (2021). Teaching and Learning Practices in Chemistry Practical Work of Malaysian Matriculation Programme: A Needs Analysis. Malaysian Online Journal of Educational Sciences, 9(4), 13-26. Retrieved from http://files.eric.ed.gov/fulltext/EJ1315829.pdf
Ahmad, A. K. F., Manangan, R. J., Juwita, N. E., & Armanda, R. F. (2023). Protection and Management of Peat Ecosystems for Forest and Land Fire Prevention in West Kalimantan. DE’RECHTSSTAAT, 9(2), 94–108. https://doi.org/10.30997/jhd.v9i2.8589 DOI: https://doi.org/10.30997/jhd.v9i2.8589
Ananda, A. N., Muhfahroyin, M., & Asih, T. (2021). Pengembangan E-Lkpd Disertai Komik Berbasis Guided Inquiry di SMA Negeri 1 Sekampung. Bioedukasi, 12(2). https://doi.org/10.24127/bioedukasi.v12i2.4448 DOI: https://doi.org/10.24127/bioedukasi.v12i2.4448
Anastas, P. T., & Warner, J. C. (2000). Green Chemistry: Theory and Practice. Oxford University Press. DOI: https://doi.org/10.1093/oso/9780198506980.001.0001
Babbar, R. (2024). Green Chemistry and Its Applications. Journal of Pharmaceutical Technology Research and Management, 12(2). https://doi.org/10.15415/jptrm.2024.122008 DOI: https://doi.org/10.15415/jptrm.2024.122008
Binani, S., Reddy, N. V., Patel, M., & Subramanyan, V. (2024). Integrating Green Chemistry in Engineering Chemistry for Achieving Sustainable Development Goals Through Education. JEET, 38(1). https://doi.org/10.16920/jeet/2024/v38is1/24208 DOI: https://doi.org/10.16920/jeet/2024/v38is1/24208
Cahyani, M. D., Gusman, T. A., & Akbar, A. Y. (2024). Profile of Green Chemistry on Chemistry Education Students: Study on Developing Green Chemistry Practical Module to Support Sustainable Development Goals (SDGs). Jurnal Penelitian Pendidikan IPA, 10(10), 7954–7959. https://doi.org/10.29303/jppipa.v10i10.7796 DOI: https://doi.org/10.29303/jppipa.v10i10.7796
Chen, X., Wang, L., Shao, X., & Wei, R. (2024). An Analysis of Chinese Chemistry Curriculum Standards Based on OECD Education 2030 Curriculum Content Mapping. Disciplinary and Interdisciplinary Science Education Research, 6, Article 2. https://doi.org/10.1186/s43031-023-00091-4 DOI: https://doi.org/10.1186/s43031-023-00091-4
Chowdhury, Z., Yokota, K., Nguyen, M. N., Andarani, P., Sudarno, S., Syafrudin, S., & Inoue, T. (2023). Comparison between the Plastic Waste Influx of Rural Rivers: Mlese River in Indonesia and Hamada River in Japan. IOP Conference Series Earth and Environmental Science, 1268(1), 012062. https://doi.org/10.1088/1755-1315/1268/1/012062 DOI: https://doi.org/10.1088/1755-1315/1268/1/012062
Clark, J. H., & Macquarrie, D. J. (2002). Handbook of Green Chemistry and Technology. Blackwell Science. DOI: https://doi.org/10.1002/9780470988305
D’Avanzo, C. (2008). Green Chemistry and Sustainability: What’s in a Name? Journal of Chemical Education, 85(8), 1039-1042.
Dahlan, E. (2013). Perubahan Penggunaan Lahan dan Dampaknya Terhadap Lingkungan di Kalimantan Barat. Jurnal Sumber Daya Alam dan Lingkungan, 4(2), 135-145.
Dewi, C. A., Khery, Y., & Erna, M. (2019). An Ethnoscience Study in Chemistry Learning to Develop Scientific Literacy. Jurnal Pendidikan IPA Indonesia, 8(2). https://doi.org/10.15294/jpii.v8i2.19261 DOI: https://doi.org/10.15294/jpii.v8i2.19261
Diquito, T. J., Franco, A. S., & Caballes, M. E. (2024). Problem-Based Learning (PBL) Using Resource Mining as a Teaching Approach: An Action Research. Journal of Arts, Humanities and Social Science, 1(2), 10-18. https://doi.org/10.69739/jahss.v1i2.74 DOI: https://doi.org/10.69739/jahss.v1i2.74
Elvira, S., & Fitriza, Z. (2023). Analysis of the Structure and Content of the Independent Curriculum on Basic Law of Chemistry. Journal of Education and Science, 7(2), 358-368. https://doi.org/10.31258/jes.7.2.p.358-368 DOI: https://doi.org/10.31258/jes.7.2.p.358-368
Green, D. (2010). Green Chemistry and Sustainable Development. Environmental Science & Technology, 44(1), 27-31.
Hapipin, U. M., Nusantara, R., & Akbar, A. (2025). Study of the Impact of Tidal Sand Mining on the Water Quality of the Kapuas River. Morfai Journal, 5(1). https://doi.org/10.54443/morfai.v5i1.2660 DOI: https://doi.org/10.54443/morfai.v5i1.2660
Haribowo, R. (2025). Improving Water Quality Through the Collaboration of BrantaSae, RIVER, and Citizen Science in River Cleaning Actions. Jurnal Pengabdian kepada Masyarakat, 11(3), 188-194. https://doi.org/10.22146/jpkm.96740 DOI: https://doi.org/10.22146/jpkm.96740
He, Z., Lyu, S., & Zhu, J. (2025). The Integration of Green Chemistry Concepts into Inorganic Chemistry Education for Chemical Majors. Education Reform and Development, 7(3). https://doi.org/10.26689/erd.v7i3.10066 DOI: https://doi.org/10.26689/erd.v7i3.10066
Herawati, N., Sunyata, L., Lukitowati, S., & Wuysang, J. M. (2024). Environmental Communication of the Kapuas River Clean Action by the Pontianak Young Generation. ETHOS (Jurnal Penelitian dan Pengabdian), 12(2). https://doi.org/10.29313/ethos.v12i2.3501 DOI: https://doi.org/10.29313/ethos.v12i2.3501
Hestiantini, A. P. (2023). Forest and Land Fires Challenges: Unraveling West Kalimantan’’s Local Politics in Environmental Governance. Journal of Contemporary Local Politics, 2(1), 1-8. https://doi.org/10.46507/jclp.v2i1.262 DOI: https://doi.org/10.46507/jclp.v2i1.262
Houghton, R. A. (2007). Balancing the Global Carbon Budget. Annual Review of Earth and Planetary Sciences, 35(1), 313-347. https://doi.org/10.1146/annurev.earth.35.031306.140057 DOI: https://doi.org/10.1146/annurev.earth.35.031306.140057
Jaenicke, J., Wsten, H., Budiman, A., & Siegert, F. (2010). Planning Hydrological Restoration of Peatlands in Indonesia to Mitigate Carbon Dioxide Emissions. Mitig Adapt Strateg Glob Change, 15, 223–239. https://doi.org/10.1007/s11027-010-9214-5 DOI: https://doi.org/10.1007/s11027-010-9214-5
Jain, S. D., Awasthi, A., & Gupta, A. K. (2024). Green Chemistry: A Sustainable Path to Environmental Responsibility and Innovation. Asian Journal of Research in Pharmaceutical Sciences. Sci., 14(1), 51-55. https://doi.org/10.52711/2231-5659.2024.00008 DOI: https://doi.org/10.52711/2231-5659.2024.00008
Jenkins, M. L., & Lutz, H. (2013). Developing Green Chemistry Education: The Role of Interdisciplinary Teaching. Environmental Chemistry Letters, 11(1), 105-113.
Jenkins, M., McKinney, L., & Taylor, P. (2016). Integrating Sustainable Chemistry into the Curriculum: The Challenges and Opportunities. Sustainable Chemistry and Pharmacy, 4, 57-63.
Jnior, C. A. D. S., Jnior, G. G., Morais, C., & Jesus, D. P. (2024). Green Chemistry for All: Three Principles of Inclusive Green and Sustainable Chemistry Education. Pure and Applied Chemistry, 96(9), 1299-1311. https://doi.org/10.1515/pac-2024-0245 DOI: https://doi.org/10.1515/pac-2024-0245
Kortam, N., Basheer, A., Much, R. A., & Hamed, Y. (2025). High School Chemistry Teachers Attitudes Toward Incorporating Environmental Education Topics into the Chemistry Curriculum in Israel. Chemistry Teacher International. https://doi.org/10.1515/cti-2025-0030 DOI: https://doi.org/10.1515/cti-2025-0030
Koulougliotis, D., Paschalidou, K., & Salta, K. (2024). Secondary School Students Engagement with Environmental Issues via Teaching Approaches Inspired by Green Chemistry. Sustainability, 16(16), 7052. https://doi.org/10.3390/su16167052 DOI: https://doi.org/10.3390/su16167052
Kurul, F., Doruk, B., & Topkaya, S. N. (2025). Principles of Green Chemistry: Building A Sustainable Future. Discov. Chem., 2, 68. https://doi.org/10.1007/s44371-025-00152-9 DOI: https://doi.org/10.1007/s44371-025-00152-9
Lancaster, M., Ainsworth, T., & Hughes, M. (2011). Chemistry in Sustainability Education: An International Perspective. International Journal of Environmental and Science Education, 6(4), 439-452.
Lee, J., Wu, S., Fatimah, Y., Smith, S. W., Rahman, N. E. B., Chong, K. Y., Saad, A., Wardhana, B., & Giam, X. (2025). Mapping Socio-Ecological Vulnerability of Tropical Peatland Fires. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ae203f DOI: https://doi.org/10.1088/1748-9326/ae203f
Lestari, N. A., Sulistyowati, D., Dellatiani, Y., Irawan, N. Z. P., Fadhilah, A., & Muyassaroh, A. (2024). Implementation of Green Chemistry Approaches in Chemistry Labs Instruction: A Systematic Literature Review. Jurnal Pendidikan Kimia, 16(3). https://doi.org/10.24114/jpkim.v16i3.63398 DOI: https://doi.org/10.24114/jpkim.v16i3.65184
Loh, P. S., Chen, C. A., Anshari, G. Z., Lou, J., Wang, J.-T., Wang, S., & Wang, B.-J. (2016). Sedimentary Organic Matter and Phosphate along the Kapuas River (West Kalimantan, Indonesia). Journal of Chemistry. https://doi.org/10.1155/2016/6874234 DOI: https://doi.org/10.1155/2016/6874234
Mahaffy, P., Lunn, J., Adema, A., Ayotte, A., Faulkner, J., Greidanus, S. N., Griffioen, A., Koot, A., Mimran, Y., Nanninga, E., Pfeifer, D., Struyk, J., Su, M., Tesfaye, N., & Wagram, G. (2024). Climate Action Can Flip the Switch: Resourcing Climate Empowerment in Chemistry Education. Journal of Chemical Education, 101(9). https://doi.org/10.1021/acs.jchemed.4c00548 DOI: https://doi.org/10.1021/acs.jchemed.4c00548
Mbah, M., & Ezegwu, C. (2024). The Decolonisation of Climate Change and Environmental Education in Africa. Sustainability, 16(9), 3744. https://doi.org/10.3390/su16093744 DOI: https://doi.org/10.3390/su16093744
McMurry, J. E., & Fay, R. C. (2008). Chemistry (7th ed.). Pearson Education.
Mukhlishin, H. (2024). Development of Teaching Materials Based on Contextual Teaching Learning (CTL) in Physical Chemistry Courses. Jurnal Penelitian Pendidikan IPA, 10(6), 3316–3324. https://doi.org/10.29303/jppipa.v10i6.6960 DOI: https://doi.org/10.29303/jppipa.v10i6.6960
Nabila, C. E. P., Rahayu, D. S., & Muhlisin, A. (2025). The Effectiveness of Problem-Based Learning (PBL) in Improving Students’’ Critical Thinking Skills in Science Education at Junior High School. Indonesian Journal of Science and Education, 9(1). https://doi.org/10.31002/ijose.v9i1.3152 DOI: https://doi.org/10.31002/ijose.v9i1.3152
Olfa, M., Santoso, H. B., Rakmawati, R., & Mintowati, E. K. (2025). Assessing Pb and Cd Levels in the Water of Kapuas River of Central Kalimantan Using Water Hyacinth as a Biomonitor Plant. Journal of Degraded and Mining Lands Management, 12(5), 8525–8534. https://doi.org/10.15243/jdmlm.2025.125.8525 DOI: https://doi.org/10.15243/jdmlm.2025.125.8525
Poliakoff, M., Fitzpatrick, J. M., Farren, T. R., & Anastas, P. T. (2002). Green Chemistry: Science and Politics of Change. Science, 297(5582), 807–810. https://doi.org/10.1126/science.297.5582.807 DOI: https://doi.org/10.1126/science.297.5582.807
Purnaini, R., & Saziati, O. (2023). Potential of Heavy Metal Pollution (Cd) in the Kapuas Kecil River. Jurnal Presipitasi, 20(1), 77-84. https://doi.org/10.14710/presipitasi.v20i1.77-84 DOI: https://doi.org/10.14710/presipitasi.v20i1.77-84
Putra, H. Y. P. (2024). History and Development of Large-Scale Oil Palm Plantations of PT BPK and PT GKG in West Kalimantan. IOP Conference Series Earth and Environmental Science, 1407(1), 012007. https://doi.org/10.1088/1755-1315/1407/1/012007 DOI: https://doi.org/10.1088/1755-1315/1407/1/012007
Salim, A., Hidayat, S., Wulandari, R., Pratama, C. D., & Ichwani, S. N. (2019). A Green Scenario for Sustainable Landscape Planning: The Case Study in Sintang Regency, West Kalimantan Province. IOP Conf. Ser.: Earth Environ. Sci., 399, 012080. https://doi.org/10.1088/1755-1315/399/1/012080 DOI: https://doi.org/10.1088/1755-1315/399/1/012080
Sanjaya, S., Suharman, A., Hadeli, M., Sukaryawan, M., Sari, D. K., Adhiya, E., Safitri, D., & Silaen, S. (2024). Development of Green Chemistry Physics Practical Worksheet Based on Case Method in Chemistry Education Study Program. Jurnal Penelitian Pendidikan IPA, 10(12), 10434–10439. https://doi.org/10.29303/jppipa.v10i12.9461 DOI: https://doi.org/10.29303/jppipa.v10i12.9461
Sarafina, I., & Nasrudin, H. (2024). Development of Guided-Inquiry-Oriented Electronic Student Worksheet to Improve Critical Thinking Ability on Acid-Base Material. Asian Journal of Science Education, 6(2). https://doi.org/10.24815/ajse.v6i2.40192 DOI: https://doi.org/10.24815/ajse.v6i2.40192
Sarminingsih, A., Andarani, P., & Nugraha, W. D. (2022). Developing a Visual Counting Method to Quantify Riverine Plastic Litter: A Case Study of Rivers in Semarang City, Indonesia. IOP Conference Series Earth and Environmental Science, 1098(1), 012050. https://doi.org/10.1088/1755-1315/1098/1/012050 DOI: https://doi.org/10.1088/1755-1315/1098/1/012050
Seifert, M., Reckling, M., & Hermanns, J. (2024). Linking the Topics Climate Change and Nutrition by Discussing Sustainability in Chemistry Lessons at School. Journal of Chemical Education, 102(1), 84-93. https://doi.org/10.1021/acs.jchemed.4c00131 DOI: https://doi.org/10.1021/acs.jchemed.4c00131
Suarmita, S., Suarman, S., & Gusnardi, G. (2025). Development of Multimedia-Based Interactive Module Teaching Materials to Increase Learning Independence Learners. Journal of Education and Learning Research, 2(2), 141-151. https://doi.org/10.62208/jelr.2.2.p.141-151 DOI: https://doi.org/10.62208/jelr.2.2.p.141-151
Sugandi, D., Agustiawan, D., Febriyanti, S. V., Yudi, Y., & Wahyuni, N. (2021). Identifikasi Jenis Mikroplastik dan Logam Berat di Air Sungai Kapuas Kota Pontianak. POSITRON, 11(2). https://doi.org/10.26418/positron.v11i2.49355 DOI: https://doi.org/10.26418/positron.v11i2.49355
Summers, S., & Harris, S. (2017). Teaching Green Chemistry in the Classroom: The Challenges and Opportunities. Journal of Chemical Education, 94(5), 654-659.
Teplá, A., Dachauer, J., Zodl, M., Steininger, R., & Lembens, A. (2025). Integrating Green Chemistry into Austrian Secondary Education Using the Context of Wood Biorefinery. Chemistry Teacher International. https://doi.org/10.1515/cti-2025-0010 DOI: https://doi.org/10.1515/cti-2025-0010
Thiagarajan, S., Semmel, D. S., & Semmel, M. I. (1974). Instructional Development for Training Teachers of Exceptional Children: A Sourcebook. University of Minnesota.
Uak, M. (2024). Green Chemistry Education. Problems of Education in the 21st Century, 82(5), 581-584. https://doi.org/10.33225/pec/24.82.581 DOI: https://doi.org/10.33225/pec/24.82.581
Vaz, C. R. S., Morais, C., Pastre, J., & Jnior, G. G. (2025). Teaching Green Chemistry in Higher Education: Contributions of a Problem-Based Learning Proposal for Understanding the Principles of Green Chemistry. Sustainability, 17(5), 2004. https://doi.org/10.3390/su17052004 DOI: https://doi.org/10.3390/su17052004
Wahyuni, T. P., & Sari, D. P. (2024). Implementation of the Problem-Based Learning Model to Improve Student Learning Outcomes on Green Chemistry Material in E Phase MAS MTI Batang Kabung, Padang City. Science Get Journal, 1(2), 41–52. https://doi.org/10.69855/science.v1i3.66 DOI: https://doi.org/10.69855/science.v1i3.66
Widyawati, R., Novita, M., & Patonah, S. (2025). ESD-Based Green Chemistry Teaching Materials in High School to Support Sustainability. KnE Social Sciences, 10(9). https://doi.org/10.18502/kss.v10i9.18506 DOI: https://doi.org/10.18502/kss.v10i9.18506
Young, J., & Makowski, M. (2015). Green Chemistry Education in Developing Countries. Chemistry Education Research and Practice, 16(3), 543-553.
Yuhdi, A., Lubis, F., & Rosmaini, R. (2024). Development of Research-Based Teaching Materials to Increase Independent Learning for Students Majoring in Indonesian Language and Literature. Journal of Education, Teaching and Learning, 9(1). https://doi.org/10.26737/jetl.v9i1.4926 DOI: https://doi.org/10.26737/jetl.v9i1.4926
License
Copyright (c) 2025 Hamdil Mukhlishin, Rizmahardian Ashari Kurniawan, Rahmat

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






