Structure Community of Endoparasites in Bullet Tuna Auxis thazard Lacepède, 1800 From Amed, Bali

Authors

Endang Wulandari Suryaningtyas , Made Ayu Pratiwi , Amayliana Ajeng Nastiti

DOI:

10.29303/jppipa.v11i11.13184

Published:

2025-11-25

Downloads

Abstract

Fish parasites represent a major part of aquatic biodiversity, and consequently affect the environment directly or indirectly through their hosts. The high prevalence of parasitic infections contributes to growth disorders and affects ecosystem dynamics. Parasites can manipulate host behavior, thereby increasing their vulnerability to predation.   A. thazard samples were obtained directly from Amed fishermen. The size of the tuna used ranged from to 20-30 cm/head, with a total of 30 fish. Samples were preserved in ice, placed in a cool box, and then brought to the Fisheries Science Laboratory, Faculty of Marine and Fisheries for parasitic worm examination. The results of this study, it can be concluded that the types of endoparasites found in this study:  Anisakis sp., Rhadinorhynchus sp., and Hemiurus sp., had prevalence values ranging from 18,3-26,6%, intensities ranging from 3.3-23.3 ind/fish, abundance values ranging from 0.61 to 5.8 ind, diversity indices ranging from 0.19 to 0.32 in the low category, and uniformity values ranging from 1,17 to 1.97 in the high category from 30 samples of Auxis thazard Lacepède, 1800 obtained from Amed.

Keywords:

Ecosystem, Enviroment, Host, Parasitic

References

Amin, O. M., Chaudhary, A., Heckmann, R. A., Ha, N. V, & Singh, H. S. (2019). The morphological and molecular description of Acanthogyrus (Acanthosentis) fusiformis n. sp. (Acanthocephala: Quadrigyridae) from the catfish Arius sp. (Ariidae) in the Pacific Ocean off Vietnam, with notes on zoogeography. Acta Parasitologica, 64(4), 779–796. https://doi.org/10.1007/s11686-019-00148-8

Anshary, H. (2016). Parasitologi Ikan: Biologi, Identifikasi, dan Pengendaliannya. Yogyakarta: Deepublish.

Aranda, V. M., Peña-Rodas, J. E., & Palomares-García, A. (2023). Parasitic load of the Pacific mackerel, Scomber japonicus. Helminthologia, 60, 133–142. https://doi.org/10.2478/helm-2023-0039

Arizono, N., Miura, T., Yamada, M., Tegoshi, T., & Onishi, K. (2012). Human infection with Pseudoterranova azarasi roundworm. Emerging Infectious Diseases, 17(3), 555–556. https://doi.org/10.3201/eid1703.101596

Boylan, M. (2016). Ethical dimensions of mathematics education. Educational Studies in Mathematics, 92(3), 395–409. https://doi.org/10.1007/s10649-015-9678-z

Chai, J.-Y., Darwin Murrell, K., & Lymbery, A. J. (2005). Fish-borne parasitic zoonoses: Status and issues. International Journal for Parasitology, 35(11–12), 1233–1254. https://doi.org/10.1016/j.ijpara.2005.07.013

Colonne, C., Pathirana, E., Lenin, M., Silva, I. De, & Pathirana, I. (2023). Occurrence of gut acanthocephalans in Frigate tuna ( Auxis thazard ) and Mackerel tuna ( Euthynnus affinis ) (Issue January). Retrieved from https://shorturl.at/d58xZ

Cribb, T. H., & Bray, R. A. (2010). Gut wash, body soak, blender and heat-fixation: approaches to the effective collection, fixation and preservation of trematodes of fishes. Systematic Parasitology, 76(1), 1–7. https://doi.org/10.1007/s11230-010-9229-z

Fenton, A., & Rands, S. A. (2006). The impact of parasite manipulation and predator foraging behavior on predator–prey communities. Ecology, 87(12), 2832–2841. https://doi.org/10.1890/0012-9658(2006)87

Gallagher, R. B., Marx, J., & Hines, P. J. (1994). Progress in parasitology. In Science (Vol. 264, Issue 5167, p. 1827). https://doi.org/10.1126/science.8009199

Gebreegziabher, H., Degefu, H., & Tsegay, A. K. (2020). Prevalence of Internal Helminth Parasites of Fish in Gilgel-Gibe River and Three Selected Ponds in and Around Jimma Town, South West Ethiopia. Turkish Journal of Fisheries and Aquatic Sciences, 20(9), 693–699. https://doi.org/10.4194/1303-2712-v20_9_04

Gehman, A.-L. M., & Byers, J. E. (2017). Non-native parasite enhances susceptibility of host to native predators. Oecologia, 183(4), 919–926. https://doi.org/10.1007/s00442-016-3784-1

Gibson, D. I., & Bray, R. A. (1986). The Hemiuridae (Digenea) of fishes from the north-east Atlantic. Bulletin of the British Museum (Natural History), 51, 1–125. https://doi.org/10.5962/bhl.part.26968

Grabda, J. (1991). Marine fish parasitology: An outline. PWN-Polish Scientific Publishers; VCH Publishers.

Hall, S. J., & Mainprize, B. (2004). Towards ecosystem‐based fisheries management. Fish and Fisheries, 5(1), 1–20. https://doi.org/10.1111/j.1467-2960.2004.00133.x

Jobling, S., & TYLER, C. R. (2003). Endocrine disruption, parasites and pollutants in wild freshwater fish. Parasitology, 126(7), S103–S107. https://doi.org/10.1017/S0031182003003652

Johnson, P. T. J., Hoverman, J. T., McKenzie, V. J., Edelson, N. B., & Richgels, K. L. D. (2016). Parasites in the food web: how biomass and relationship types influence parasite aggregation and transmission. Parasites & Vectors, 9. https://doi.org/10.1186/s13071-016-1863-0

Khalil, L. F., Jones, A., & Bray, R. A. (1994). Keys to the cestode parasites of vertebrates. CAB International.

Knoff, M., Gonçalvez da Fonseca, M. C., Felizardo, N. N., dos Santos, A. L., Carmona de São Clemente, S., Kohn, A., & Corrêa Gomes, D. (2017). Anisakidae and Raphidascarididae Nematodes Parasites of Tuna (Perciformes: Scombridae) From State of Rio De Janeiro, Brazil. Neotropical Helminthology, 11(1), 45–52. Retrieved from https://www.cabidigitallibrary.org/doi/full/10.5555/20193171449

Koepper, S., Nuryati, S., Palm, H. W., Wild, C., Yulianto, I., & Kleinertz, S. (2022). Metazoan endoparasite fauna and feeding ecology of commercial fishes from Java, Indonesia. Parasitology Research, 121(2), 551–562. https://doi.org/10.1007/s00436-021-07377-4

Lafferty, K. D., Allesina, S., Arim, M., Briggs, C. J., De Leo, G., Dobson, A. P., Dunne, J. A., Johnson, P. T. J., Kuris, A. M., Marcogliese, D. J., Martinez, N. D., Memmott, J., Marquet, P. A., McLaughlin, J. P., Mordecai, E. A., Pascual, M., Poulin, R., & Thieltges, D. W. (2008). Parasites in food webs: the ultimate missing links. Ecology Letters, 11(6), 533–546. https://doi.org/10.1111/j.1461-0248.2008.01174.x

Levsen, A., Cipriani, P., Mattiucci, S., Gay, M., Hastie, L. C., MacKenzie, K., Pierce, G. J., Svanevik, C. S., Højgaard, D. P., Nascetti, G., González, A. F., & Pascual, S. (2018). Anisakis species composition and infection characteristics in Atlantic mackerel, Scomber scombrus , from major European fishing grounds — reflecting changing fish host distribution and migration pattern. Fisheries Research, 202, 112–121. https://doi.org/10.1016/j.fishres.2017.07.030

Maurice, P. M. P. (1899). Notes diverses sur les COLÉOPTÈRES. Muséum National d’Histoire Naturelle, 1–8.

Moravec, F. (1987). Revision of capillariid nematodes (subfamily Capillariinae) parasitic in fishes. Studie ČSAV, 3(3), 144. Retrieved from https://www.cabidigitallibrary.org/doi/full/10.5555/19880845715

Navarro‐Barranco, C., Tierno de Figueroa, J. M., Ros, M., & Guerra García, J. M. (2019). Influence of Marine Protected Areas on parasitic prevalence: the case of the isopod Anilocra physodes as a parasite of the fish Lithognathus mormyrus. Journal of Zoology, 308(4), 280–292. https://doi.org/10.1111/jzo.12674

Palm, H. W. (2004). The Trypanorhyncha Diesing, 1863. PKSPL-IPB Press.

Palm, H. W., & Bray, R. A. (2014). Marine Fish Parasitology in Hawaii. Westarp and Partner Digitaldruck, Hohenwaesleben.

Palm, H. W., & Klimpel, S. (2008). Metazoan fish parasites of Macrourus berglax Lacepède, 1801 and other macrourids of the North Atlantic: Invasion of the deep sea from the continental shelf. Deep-Sea Research Part II: Topical Studies in Oceanography, 55(1–2), 236–242. https://doi.org/10.1016/j.dsr2.2007.09.010

Pantoja, C., & Kudlai, O. (2022). Hemiurid Trematodes (Digenea: Hemiuridae) from Marine Fishes off the Coast of Rio de Janeiro, Brazil, with Novel Molecular Data. Animals, 12(23), 3355. https://doi.org/10.3390/ani12233355

Pramardika, D. D., Satrija, F., Sulistiono, S., Tiuria, R., Nugraha, A. B., & Murtini, S. (2025). Seroprevalence and risk factors of anisakiasis associated with raw seafood consumption in the Sangihe Islands, Indonesia. Journal of Advanced Veterinary and Animal Research, 12(1), 8–18. https://doi.org/10.5455/javar.2025.l867

Santoro, M., Iaccarino, D., & Bellisario, B. (2020). Host biological factors and geographic locality influence predictors of parasite communities in sympatric sparid fishes off the southern Italian coast. Scientific Reports, 10(1), 13283. https://doi.org/10.1038/s41598-020-69628-1

Santoro, M., Occhibove, F., Cusano, L. M., Palomba, M., Pacheco-Chaves, B., Carvajal-Rodríguez, J. M., Monge-Amador, M., Rojas, A., & Solano-Barquero, A. (2025). Parasite community of the pelagic thresher Alopias pelagicus (Lamniformes) as additional indicator of trophic network status and functioning. Scientific Reports, 15(1), 26473. https://doi.org/10.1038/s41598-025-11572-z

Sindermann, C. J. (1987). Effects of parasites on fish populations: Practical considerations. International Journal for Parasitology, 17(2), 371–382. https://doi.org/10.1016/0020-7519(87)90112-3

Strømnes, E., & Andersen, K. (2003). Growth of whaleworm (Anisakis simplex, Nematoda, Ascaridoidea, Anisakidae) third-stage larvae in paratenic fish hosts. Parasitology Research, 89(5), 335–341. https://doi.org/10.1007/s00436-002-0729-4.

Sures, B., Nachev, M., Schwelm, J., Grabner, D., & Selbach, C. (2023). Environmental parasitology: stressor effects on aquatic parasites. Trends in Parasitology, 39(6), 461–474. https://doi.org/10.1016/j.pt.2023.03.005

Author Biographies

Endang Wulandari Suryaningtyas, Udayana University

Made Ayu Pratiwi, Udayana University

Amayliana Ajeng Nastiti, Airlangga University

Downloads

Download data is not yet available.

How to Cite

Suryaningtyas, E. W., Pratiwi, M. A., & Nastiti, A. A. (2025). Structure Community of Endoparasites in Bullet Tuna Auxis thazard Lacepède, 1800 From Amed, Bali. Jurnal Penelitian Pendidikan IPA, 11(11), 72–78. https://doi.org/10.29303/jppipa.v11i11.13184