Vol. 11 No. 11 (2025): November
Open Access
Peer Reviewed

Morphophysiological Response of Rice Genotypes to Seed Priming in Various Environments

Authors

Akmal , Annas Boceng , Suryanto , Asrijal , Sukriming Sapareng , Taruna Shafa Arzam AR , Rahmi Azizah Mudaffar , Rosnina , Sumantri

DOI:

10.29303/jppipa.v11i11.13185

Published:

2025-11-25

Downloads

Abstract

Seed priming with PEG 6000 is a pre-planting technology that has the potential to increase rice tolerance to drought stress and improve plant establishment in various seedling systems. This study aimed to examine the morphophysiological responses of three rice genotypes (IR64, Ciherang, and Cakrabuana) to seed priming with PEG 6000 at various concentrations and in different seedling systems. The study was conducted in two stages: (1) testing the tolerance of genotypes to drought stress using PEG 6000 concentrations of 0, 50, 100, and 150 g L⁻¹ at the germination stage, and (2) evaluating the effectiveness of priming at the vegetative stage with wet and dry seeding systems. A concentration of PEG 6000 at 100 g L⁻¹ provided optimal priming effects with a 15-25% increase in germination percentage and a 20-35% increase in seedling vigor compared to the control. The Cakrabuana genotype showed the best tolerance to drought stress, followed by Ciherang and IR64. Seed priming with PEG 6000 at a concentration of 100 g L⁻¹ effectively enhanced the drought tolerance and adaptation of rice genotypes in various germination systems, with varying responses among genotypes.

Keywords:

Genotype morphophysiology PEG 6000 seed priming tolerance

References

Abd-El-Aty, M. S., Kamara, M. M., Elgamal, W. H., Mesbah, M. I., Abomarzoka, E. S. A., Alwutayd, K. M., Mansour, E., Ben Abdelmalek, I., Behiry, S. I., Almoshadak, A. S., & Abdelaal, K. (2024). Exogenous application of nano-silicon, potassium sulfate, or proline enhances physiological parameters, antioxidant enzyme activities, and agronomic traits of diverse rice genotypes under water deficit conditions. Heliyon, 10(5), e26077. https://doi.org/10.1016/j.heliyon.2024.e26077 DOI: https://doi.org/10.1016/j.heliyon.2024.e26077

Adzigbe, J., Frimpong, F., Danquah, A., Danquah, E. Y., Asante, I. K., Abebrese, S. O., Dormatey, R., Afriyie-Debrah, C., Ribeiro, P. F., Owusu Danquah, E., Agyeman, K., Bam, R. K., & Asante, M. D. (2025). The responses and adaptations of rice (Oryza sativa L.) to drought stress: A review. Climate Smart Agriculture, 2(100080), 1–20. https://doi.org/10.1016/j.csag.2025.100080 DOI: https://doi.org/10.1016/j.csag.2025.100080

Ali, A., Ullah, Z., Ullah, R., & Kazi, M. (2024). Barley a nutritional powerhouse for gut health and chronic disease defense. Heliyon, 10(20), e38669. https://doi.org/10.1016/j.heliyon.2024.e38669 DOI: https://doi.org/10.1016/j.heliyon.2024.e38669

Balfagón, D., Segarra-Medina, C., Rambla, J. L., & Gómez-Cadenas, A. (2025). Metabolic reconfiguration and proline-mediated responses enhance citrus tolerance to combined water, light and heat stress. Plant Stress, 18(August), 101039. https://doi.org/10.1016/j.stress.2025.101039 DOI: https://doi.org/10.1016/j.stress.2025.101039

Chen, Y., Li, R., Ge, J., Liu, J., Wang, W., Xu, M., Zhang, R., Hussain, S., Wei, H., & Dai, Q. (2021). Exogenous melatonin confers enhanced salinity tolerance in rice by blocking the ROS burst and improving Na+/K+ homeostasis. Environmental and Experimental Botany, 189(May), 104530. https://doi.org/10.1016/j.envexpbot.2021.104530 DOI: https://doi.org/10.1016/j.envexpbot.2021.104530

Chengqi, Z., Yuxuan, Y., Tian, Q., Yafan, H., Jifeng, Y., & Zhicheng, S. (2024). Drought-Tolerant Rice at Molecular Breeding Eras: An Emerging Reality. Rice Science, 31(2), 179–189. https://doi.org/10.1016/j.rsci.2023.11.005 DOI: https://doi.org/10.1016/j.rsci.2023.11.005

Das, A., Bagchi, S., Pal, S., Ganguly, A., Sil, S. K., & Adak, M. K. (2024). Utilizing Arthrospira platensis for the fabrication of zinc oxide nanoparticles: Analysis and assessment for enhancing drought tolerance in Sub1A QTL bearing rice seedlings. Plant Nano Biology, 10(October), 100101. https://doi.org/10.1016/j.plana.2024.100101 DOI: https://doi.org/10.1016/j.plana.2024.100101

Eweda, M. A., Jalil, S., Rashwan, A. K., Tsago, Y., Hassan, U., & Jin, X. (2025). Molecular and physiological characterizations of roots under drought stress in rice: A comprehensive review. Plant Physiology and Biochemistry, 225(110012). https://doi.org/https://doi.org/10.1016/j.plaphy.2025.110012 DOI: https://doi.org/10.1016/j.plaphy.2025.110012

Hu, W. fei, Qin, Y. bo, Lin, J. jiang, Chen, T. ting, Li, S. feng, Chen, Y. tiao, Xiong, J., & Fu, G. fu. (2025). Unraveling the nexus of drought stress and rice physiology: mechanisms, mitigation, and sustainable cultivation. Plant Stress, 17(July), 100973. https://doi.org/10.1016/j.stress.2025.100973 DOI: https://doi.org/10.1016/j.stress.2025.100973

Jisha, K. C., & Puthur, J. T. (2016). Seed Priming with Beta-Amino Butyric Acid Improves Abiotic Stress Tolerance in Rice Seedlings. Rice Science, 23(5), 242–254. https://doi.org/10.1016/j.rsci.2016.08.002 DOI: https://doi.org/10.1016/j.rsci.2016.08.002

Naz, A., Rohman, M. M., Haque, M. A., Mim, M. F., Chowdhury, M. Z. H., Sultana, R., & Islam, S. M. N. (2024). Metarhizium anisopliae seed priming alleviates drought-induced oxidative stress and improves growth of barley (Hordeum vulgare L.). Plant Stress, 14(October), 100664. https://doi.org/10.1016/j.stress.2024.100664 DOI: https://doi.org/10.1016/j.stress.2024.100664

Oelviani, R., Adiyoga, W., Suhendrata, T., Bakti, I. G. M. Y., Sutanto, H. A., Fahmi, D. A., Chanifah, C., Jatuningtyas, R. K., Samijan, S., Malik, A., Sahara, D., Utomo, B., Wulanjari, M. E., Winarni, E., Yardha, Y., & Aristya, V. E. (2024). Effects of soil salinity on rice production and technical efficiency: Evidence from the northern coastal region of Central Java, Indonesia. Case Studies in Chemical and Environmental Engineering, 10(October), 101010. https://doi.org/10.1016/j.cscee.2024.101010 DOI: https://doi.org/10.1016/j.cscee.2024.101010

Oliveira, F. D. B. de, Pereira, I. M. C., Costa, I. R. S., Cavalcante, F. L. P., Coutinho, Í. A. C., Alves, M. S., Paula-Marinho, de O., Gomes-Filho, S. E., & Carvalho, H. H. de. (2025). Endoplasmic reticulum activation via tunicamycin seed priming enhances salt acclimation in rice seedlings. Plant Science, 358(112567). https://doi.org/https://doi.org/10.1016/j.plantsci.2025.112567 DOI: https://doi.org/10.1016/j.plantsci.2025.112567

Rumanti, I. A., Hairmansis, A., Nugraha, Y., Nafisah, Susanto, U., Wardana, P., Subandiono, R. E., Zaini, Z., Sembiring, H., Khan, N. I., Singh, R. K., Johnson, D. E., Stuart, A. M., & Kato, Y. (2018). Development of tolerant rice varieties for stress-prone ecosystems in the coastal deltas of Indonesia. Field Crops Research, 223(75–82). https://doi.org/https://doi.org/10.1016/j.fcr.2018.04.006 DOI: https://doi.org/10.1016/j.fcr.2018.04.006

Sitaresmi, T., Hairmansis, A., Widyastuti, Y., Rachmawati, Susanto, U., Wibowo, B. P., Widiastuti, M. L., Rumanti, I. A., Suwarno, W. B., & Nugraha, Y. (2023). Advances in the development of rice varieties with better nutritional quality in Indonesia. Journal of Agriculture and Food Research, 12(April), 100602. https://doi.org/10.1016/j.jafr.2023.100602 DOI: https://doi.org/10.1016/j.jafr.2023.100602

Tahjib-Ul-arif, M., Asaduzzaman, M., Shirazy, B. J., Khan, M. S. U., Rahman, A. M. S., Murata, Y., Hamed, S. A., & Latef, A. A. H. A. (2024). Seed Priming Improves Chilling Stress Tolerance in Rice (Oryza sativa L.) Seedlings. Phyton-International Journal of Experimental Botany, 93(11), 3013–3027. https://doi.org/10.32604/phyton.2024.058710 DOI: https://doi.org/10.32604/phyton.2024.058710

Tan, Y., Liu, X., Shen, Z., Xiao, Y., Zhang, Y., Du, H., Wu, Z., Zhi, D., Núñez-Delgado, A., & Yang, Y. (2025). Effects of seed priming with different concentrations and forms of silicon on germination and growth of rice under cadmium stress. Applied Soil Ecology, 207(105947). https://doi.org/https://doi.org/10.1016/j.apsoil.2025.105947 DOI: https://doi.org/10.1016/j.apsoil.2025.105947

Tyagi, K., V, P., Tyagi, P., Kumari, A., Pandey, R., Meena, N. L., Khan, M. I. R., Tyagi, A., & Maheshwari, C. (2023). Seed priming with melatonin induces rhizogenesis and modulates physio-biochemical traits in high-yielding rice (Oryza sativa L.) genotypes. South African Journal of Botany, 163, 191–200. https://doi.org/https://doi.org/10.1016/j.sajb.2023.10.043 DOI: https://doi.org/10.1016/j.sajb.2023.10.043

Ullah, S., Khalid, M., Nafees, M., Amin, F., Khan Durrani, S., & Ali, U. (2025). Seed priming as a mitigation strategy for drought stress: Impacts on germination, growth, and antioxidant activity in sweet pepper (Capsicum annuum L.). Biocatalysis and Agricultural Biotechnology, 69(103808). https://doi.org/https://doi.org/10.1016/j.bcab.2025.103808 DOI: https://doi.org/10.1016/j.bcab.2025.103808

van den Berg, L., & Zeng, Y. J. (2006). Response of South African indigenous grass species to drought stress induced by polyethylene glycol (PEG) 6000. South African Journal of Botany, 72(2), 284–286. https://doi.org/10.1016/j.sajb.2005.07.006 DOI: https://doi.org/10.1016/j.sajb.2005.07.006

Wang, Y., Shen, C., Jiang, Q., Wang, Z., Gao, C., & Wang, W. (2022). Seed priming with calcium chloride enhances stress tolerance in rice seedlings. Plant Science, 323(April), 111381. https://doi.org/10.1016/j.plantsci.2022.111381 DOI: https://doi.org/10.1016/j.plantsci.2022.111381

Ying, S., Niu, J., Yang, J., Ding, J., Fan, J., Yu, Z., Yi, X., Cheng, J., Jiang, H., & Peng, X. (2025). The role of pyrophosphatase in mitochondrial function and drought stress response in rice. Plant Physiology and Biochemistry, 229(110438). https://doi.org/https://doi.org/10.1016/j.plaphy.2025.110438 DOI: https://doi.org/10.1016/j.plaphy.2025.110438

Zhang, K., Han, X., Fu, Y., Khan, Z., Zhang, B., Bi, J., Hu, L., & Luo, L. (2024). Biochar coating promoted rice growth under drought stress through modulating photosynthetic apparatus, chloroplast ultrastructure, stomatal traits and ROS homeostasis. Plant Physiology and Biochemistry, 216(109145). https://doi.org/https://doi.org/10.1016/j.plaphy.2024.109145 DOI: https://doi.org/10.1016/j.plaphy.2024.109145

Zhang, L., Fang, X., Yu, N., Chen, J., Wang, H., Shen, Q., Chen, G., & Wang, Y. (2023). Melatonin Promotes Rice Seed Germination under Drought Stress by Regulating Antioxidant Capacity. Phyton-International Journal of Experimental Botany, 92(5), 1571–1587. https://doi.org/10.32604/phyton.2023.025481 DOI: https://doi.org/10.32604/phyton.2023.025481

Author Biographies

Akmal, Program Studi Agroteknologi, Universitas Andi Djemma, Palopo, Indonesia

Author Origin : Indonesia

Annas Boceng, Program Studi Agroteknologio, Universitas Muslim Indonesia, Makassar

Author Origin : Indonesia

Suryanto, Program Studi Agribisnis, Universitas Andi Djemma, Palopo

Author Origin : Indonesia

Asrijal, Program Studi Agroteknologi, Universitas Puangrimaggalatung, Sengkang

Author Origin : Indonesia

Sukriming Sapareng, Program Studi Agroteknologi, Universitas Andi Djemma, Palopo

Author Origin : Indonesia

Taruna Shafa Arzam AR, Program Studi Agroteknologi, Universitas Andi Djemma, Palopo

Author Origin : Indonesia

Rahmi Azizah Mudaffar, Program Studi Agroteknologi, Universitas Andi Djemma, Palopo

Author Origin : Indonesia

Rosnina, Program Studi Agribisnis, Universitas Andi Djemma, Palopo

Author Origin : Indonesia

Sumantri, Program Studi Agribisnis, Universitas Andi Djemma, Palopo

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Akmal, Boceng, A., Suryanto, Asrijal, Sapareng, S., AR, T. S. A., … Sumantri. (2025). Morphophysiological Response of Rice Genotypes to Seed Priming in Various Environments. Jurnal Penelitian Pendidikan IPA, 11(11), 1413–1419. https://doi.org/10.29303/jppipa.v11i11.13185