Morphophysiological Response of Rice Genotypes to Seed Priming in Various Environments
DOI:
10.29303/jppipa.v11i11.13185Published:
2025-11-25Downloads
Abstract
Seed priming with PEG 6000 is a pre-planting technology that has the potential to increase rice tolerance to drought stress and improve plant establishment in various seedling systems. This study aimed to examine the morphophysiological responses of three rice genotypes (IR64, Ciherang, and Cakrabuana) to seed priming with PEG 6000 at various concentrations and in different seedling systems. The study was conducted in two stages: (1) testing the tolerance of genotypes to drought stress using PEG 6000 concentrations of 0, 50, 100, and 150 g L⁻¹ at the germination stage, and (2) evaluating the effectiveness of priming at the vegetative stage with wet and dry seeding systems. A concentration of PEG 6000 at 100 g L⁻¹ provided optimal priming effects with a 15-25% increase in germination percentage and a 20-35% increase in seedling vigor compared to the control. The Cakrabuana genotype showed the best tolerance to drought stress, followed by Ciherang and IR64. Seed priming with PEG 6000 at a concentration of 100 g L⁻¹ effectively enhanced the drought tolerance and adaptation of rice genotypes in various germination systems, with varying responses among genotypes.
Keywords:
Genotype morphophysiology PEG 6000 seed priming toleranceReferences
Abd-El-Aty, M. S., Kamara, M. M., Elgamal, W. H., Mesbah, M. I., Abomarzoka, E. S. A., Alwutayd, K. M., Mansour, E., Ben Abdelmalek, I., Behiry, S. I., Almoshadak, A. S., & Abdelaal, K. (2024). Exogenous application of nano-silicon, potassium sulfate, or proline enhances physiological parameters, antioxidant enzyme activities, and agronomic traits of diverse rice genotypes under water deficit conditions. Heliyon, 10(5), e26077. https://doi.org/10.1016/j.heliyon.2024.e26077 DOI: https://doi.org/10.1016/j.heliyon.2024.e26077
Adzigbe, J., Frimpong, F., Danquah, A., Danquah, E. Y., Asante, I. K., Abebrese, S. O., Dormatey, R., Afriyie-Debrah, C., Ribeiro, P. F., Owusu Danquah, E., Agyeman, K., Bam, R. K., & Asante, M. D. (2025). The responses and adaptations of rice (Oryza sativa L.) to drought stress: A review. Climate Smart Agriculture, 2(100080), 1–20. https://doi.org/10.1016/j.csag.2025.100080 DOI: https://doi.org/10.1016/j.csag.2025.100080
Ali, A., Ullah, Z., Ullah, R., & Kazi, M. (2024). Barley a nutritional powerhouse for gut health and chronic disease defense. Heliyon, 10(20), e38669. https://doi.org/10.1016/j.heliyon.2024.e38669 DOI: https://doi.org/10.1016/j.heliyon.2024.e38669
Balfagón, D., Segarra-Medina, C., Rambla, J. L., & Gómez-Cadenas, A. (2025). Metabolic reconfiguration and proline-mediated responses enhance citrus tolerance to combined water, light and heat stress. Plant Stress, 18(August), 101039. https://doi.org/10.1016/j.stress.2025.101039 DOI: https://doi.org/10.1016/j.stress.2025.101039
Chen, Y., Li, R., Ge, J., Liu, J., Wang, W., Xu, M., Zhang, R., Hussain, S., Wei, H., & Dai, Q. (2021). Exogenous melatonin confers enhanced salinity tolerance in rice by blocking the ROS burst and improving Na+/K+ homeostasis. Environmental and Experimental Botany, 189(May), 104530. https://doi.org/10.1016/j.envexpbot.2021.104530 DOI: https://doi.org/10.1016/j.envexpbot.2021.104530
Chengqi, Z., Yuxuan, Y., Tian, Q., Yafan, H., Jifeng, Y., & Zhicheng, S. (2024). Drought-Tolerant Rice at Molecular Breeding Eras: An Emerging Reality. Rice Science, 31(2), 179–189. https://doi.org/10.1016/j.rsci.2023.11.005 DOI: https://doi.org/10.1016/j.rsci.2023.11.005
Das, A., Bagchi, S., Pal, S., Ganguly, A., Sil, S. K., & Adak, M. K. (2024). Utilizing Arthrospira platensis for the fabrication of zinc oxide nanoparticles: Analysis and assessment for enhancing drought tolerance in Sub1A QTL bearing rice seedlings. Plant Nano Biology, 10(October), 100101. https://doi.org/10.1016/j.plana.2024.100101 DOI: https://doi.org/10.1016/j.plana.2024.100101
Eweda, M. A., Jalil, S., Rashwan, A. K., Tsago, Y., Hassan, U., & Jin, X. (2025). Molecular and physiological characterizations of roots under drought stress in rice: A comprehensive review. Plant Physiology and Biochemistry, 225(110012). https://doi.org/https://doi.org/10.1016/j.plaphy.2025.110012 DOI: https://doi.org/10.1016/j.plaphy.2025.110012
Hu, W. fei, Qin, Y. bo, Lin, J. jiang, Chen, T. ting, Li, S. feng, Chen, Y. tiao, Xiong, J., & Fu, G. fu. (2025). Unraveling the nexus of drought stress and rice physiology: mechanisms, mitigation, and sustainable cultivation. Plant Stress, 17(July), 100973. https://doi.org/10.1016/j.stress.2025.100973 DOI: https://doi.org/10.1016/j.stress.2025.100973
Jisha, K. C., & Puthur, J. T. (2016). Seed Priming with Beta-Amino Butyric Acid Improves Abiotic Stress Tolerance in Rice Seedlings. Rice Science, 23(5), 242–254. https://doi.org/10.1016/j.rsci.2016.08.002 DOI: https://doi.org/10.1016/j.rsci.2016.08.002
Naz, A., Rohman, M. M., Haque, M. A., Mim, M. F., Chowdhury, M. Z. H., Sultana, R., & Islam, S. M. N. (2024). Metarhizium anisopliae seed priming alleviates drought-induced oxidative stress and improves growth of barley (Hordeum vulgare L.). Plant Stress, 14(October), 100664. https://doi.org/10.1016/j.stress.2024.100664 DOI: https://doi.org/10.1016/j.stress.2024.100664
Oelviani, R., Adiyoga, W., Suhendrata, T., Bakti, I. G. M. Y., Sutanto, H. A., Fahmi, D. A., Chanifah, C., Jatuningtyas, R. K., Samijan, S., Malik, A., Sahara, D., Utomo, B., Wulanjari, M. E., Winarni, E., Yardha, Y., & Aristya, V. E. (2024). Effects of soil salinity on rice production and technical efficiency: Evidence from the northern coastal region of Central Java, Indonesia. Case Studies in Chemical and Environmental Engineering, 10(October), 101010. https://doi.org/10.1016/j.cscee.2024.101010 DOI: https://doi.org/10.1016/j.cscee.2024.101010
Oliveira, F. D. B. de, Pereira, I. M. C., Costa, I. R. S., Cavalcante, F. L. P., Coutinho, Í. A. C., Alves, M. S., Paula-Marinho, de O., Gomes-Filho, S. E., & Carvalho, H. H. de. (2025). Endoplasmic reticulum activation via tunicamycin seed priming enhances salt acclimation in rice seedlings. Plant Science, 358(112567). https://doi.org/https://doi.org/10.1016/j.plantsci.2025.112567 DOI: https://doi.org/10.1016/j.plantsci.2025.112567
Rumanti, I. A., Hairmansis, A., Nugraha, Y., Nafisah, Susanto, U., Wardana, P., Subandiono, R. E., Zaini, Z., Sembiring, H., Khan, N. I., Singh, R. K., Johnson, D. E., Stuart, A. M., & Kato, Y. (2018). Development of tolerant rice varieties for stress-prone ecosystems in the coastal deltas of Indonesia. Field Crops Research, 223(75–82). https://doi.org/https://doi.org/10.1016/j.fcr.2018.04.006 DOI: https://doi.org/10.1016/j.fcr.2018.04.006
Sitaresmi, T., Hairmansis, A., Widyastuti, Y., Rachmawati, Susanto, U., Wibowo, B. P., Widiastuti, M. L., Rumanti, I. A., Suwarno, W. B., & Nugraha, Y. (2023). Advances in the development of rice varieties with better nutritional quality in Indonesia. Journal of Agriculture and Food Research, 12(April), 100602. https://doi.org/10.1016/j.jafr.2023.100602 DOI: https://doi.org/10.1016/j.jafr.2023.100602
Tahjib-Ul-arif, M., Asaduzzaman, M., Shirazy, B. J., Khan, M. S. U., Rahman, A. M. S., Murata, Y., Hamed, S. A., & Latef, A. A. H. A. (2024). Seed Priming Improves Chilling Stress Tolerance in Rice (Oryza sativa L.) Seedlings. Phyton-International Journal of Experimental Botany, 93(11), 3013–3027. https://doi.org/10.32604/phyton.2024.058710 DOI: https://doi.org/10.32604/phyton.2024.058710
Tan, Y., Liu, X., Shen, Z., Xiao, Y., Zhang, Y., Du, H., Wu, Z., Zhi, D., Núñez-Delgado, A., & Yang, Y. (2025). Effects of seed priming with different concentrations and forms of silicon on germination and growth of rice under cadmium stress. Applied Soil Ecology, 207(105947). https://doi.org/https://doi.org/10.1016/j.apsoil.2025.105947 DOI: https://doi.org/10.1016/j.apsoil.2025.105947
Tyagi, K., V, P., Tyagi, P., Kumari, A., Pandey, R., Meena, N. L., Khan, M. I. R., Tyagi, A., & Maheshwari, C. (2023). Seed priming with melatonin induces rhizogenesis and modulates physio-biochemical traits in high-yielding rice (Oryza sativa L.) genotypes. South African Journal of Botany, 163, 191–200. https://doi.org/https://doi.org/10.1016/j.sajb.2023.10.043 DOI: https://doi.org/10.1016/j.sajb.2023.10.043
Ullah, S., Khalid, M., Nafees, M., Amin, F., Khan Durrani, S., & Ali, U. (2025). Seed priming as a mitigation strategy for drought stress: Impacts on germination, growth, and antioxidant activity in sweet pepper (Capsicum annuum L.). Biocatalysis and Agricultural Biotechnology, 69(103808). https://doi.org/https://doi.org/10.1016/j.bcab.2025.103808 DOI: https://doi.org/10.1016/j.bcab.2025.103808
van den Berg, L., & Zeng, Y. J. (2006). Response of South African indigenous grass species to drought stress induced by polyethylene glycol (PEG) 6000. South African Journal of Botany, 72(2), 284–286. https://doi.org/10.1016/j.sajb.2005.07.006 DOI: https://doi.org/10.1016/j.sajb.2005.07.006
Wang, Y., Shen, C., Jiang, Q., Wang, Z., Gao, C., & Wang, W. (2022). Seed priming with calcium chloride enhances stress tolerance in rice seedlings. Plant Science, 323(April), 111381. https://doi.org/10.1016/j.plantsci.2022.111381 DOI: https://doi.org/10.1016/j.plantsci.2022.111381
Ying, S., Niu, J., Yang, J., Ding, J., Fan, J., Yu, Z., Yi, X., Cheng, J., Jiang, H., & Peng, X. (2025). The role of pyrophosphatase in mitochondrial function and drought stress response in rice. Plant Physiology and Biochemistry, 229(110438). https://doi.org/https://doi.org/10.1016/j.plaphy.2025.110438 DOI: https://doi.org/10.1016/j.plaphy.2025.110438
Zhang, K., Han, X., Fu, Y., Khan, Z., Zhang, B., Bi, J., Hu, L., & Luo, L. (2024). Biochar coating promoted rice growth under drought stress through modulating photosynthetic apparatus, chloroplast ultrastructure, stomatal traits and ROS homeostasis. Plant Physiology and Biochemistry, 216(109145). https://doi.org/https://doi.org/10.1016/j.plaphy.2024.109145 DOI: https://doi.org/10.1016/j.plaphy.2024.109145
Zhang, L., Fang, X., Yu, N., Chen, J., Wang, H., Shen, Q., Chen, G., & Wang, Y. (2023). Melatonin Promotes Rice Seed Germination under Drought Stress by Regulating Antioxidant Capacity. Phyton-International Journal of Experimental Botany, 92(5), 1571–1587. https://doi.org/10.32604/phyton.2023.025481 DOI: https://doi.org/10.32604/phyton.2023.025481
License
Copyright (c) 2025 Akmal, Annas Boceng, Suryanto, Asrijal, Sukriming Sapareng, Taruna Shafa Arzam AR, Rahmi Azizah Mudaffar, Rosnina, Sumantri

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






