Assessment of Bias-Correction Methods for CHIRPS Satellite Rainfall Estimates in the Petung Watershed, Indonesia
DOI:
10.29303/jppipa.v11i12.13250Published:
2025-12-25Downloads
Abstract
Satellite-based rainfall products such as CHIRPS are essential in data-scarce tropical regions, but they require bias correction to improve reliability. This study compares five correction techniques—Linear Regression, Linear Scaling, a static Correction Factor, a Genetic Algorithm (GA)-optimized Correction Factor, and a Python-based Temporal Analysis—against gauge observations in the Petung Watershed, East Java, Indonesia. The GA method optimized nonlinear correction coefficient by minimizing RMSE through iterative selection and mutation processes. The Temporal Analysis applied monthly dynamic scaling using Python scripts to account for seasonal rainfall variability. Model performance was assessed using the Nash–Sutcliffe Efficiency (NSE), Pearson correlation (R), and the RMSE–Standard Deviation Ratio (RSR). Linear Scaling achieved the best results (R = 0.857, NSE = 0.724, RSR = 0.547), followed by Linear Regression. The GA-based approach showed marginal improvement over the static factor (NSE = 0.658 versus 0.639). Temporal Analysis improved correlation (R = 0.813) but showed poor performance overall (RSR = 1.425), indicating residual errors exceeding natural data variability. While statistical methods performed best in this case, the poor results of the complex methods reflect implementation limitations—rather than inherent inferiority. This study also highlights the importance of including RSR alongside conventional metrics to expose residual structures often masked by high correlation.
Keywords:
Bias Correction Calibration CHIRPS Hydrological model Satellite rainfall Statistical validationReferences
Aadhar, S., & Mishra, V. (2017). High-Resolution Near Real-Time Drought Monitoring in South Asia. Scientific Data. https://doi.org/10.1038/sdata.2017.145 DOI: https://doi.org/10.1038/sdata.2017.145
Arisa, S. N., Khaldun, I., & Safrida, S. (2021). The Effect of Search, Solve, Create and Share Learning Models to Improve Students ’Critical Thinking Skills on Acid and Basic Titration Materials. Jurnal Penelitian Pendidikan IPA, 7(2), 191–195. https://doi.org/10.29303/jppipa.v7i2.625 DOI: https://doi.org/10.29303/jppipa.v7i2.625
Bedada, B. A. (2025). Rainfall-Runoff Hydrological Modeling Using Observed and Remotely Sensed Rainfall Data for Sustainable Watershed Management over Modjo Catchment, Central Ethiopia: Insights from HEC-HMS Model. https://doi.org/10.20944/preprints202501.0842.v1 DOI: https://doi.org/10.20944/preprints202501.0842.v1
Dinku, T., Funk, C., Peterson, P., Maidment, R., Tadesse, T., Gadain, H., & Ceccato, P. (2018). Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Quarterly Journal of the Royal Meteorological Society, 144(S1), 292–312. https://doi.org/10.1002/qj.3244 DOI: https://doi.org/10.1002/qj.3244
Dlamini, W. M., & Tfwala, S. S. (2024). The Performance of a High‐resolution Satellite‐derived Precipitation Product Over the Topographically Complex Landscape of Eswatini. Geoscience Data Journal. https://doi.org/10.1002/gdj3.278 DOI: https://doi.org/10.1002/gdj3.278
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2(1), 150066. https://doi.org/10.1038/sdata.2015.66 DOI: https://doi.org/10.1038/sdata.2015.66
Funk, C., Verdin, A., Michaelsen, J., Peterson, P., Pedreros, D., & Husak, G. (2015). A global satellite-assisted precipitation climatology. Earth System Science Data, 7(2), 275–287. https://doi.org/10.5194/essd-7-275-2015 DOI: https://doi.org/10.5194/essd-7-275-2015
Gu, L., Sun, Y., Gao, C., & She, L. (2024). A Coupled Parameter Automation Calibration Module for Urban Stormwater Modelling. Water. https://doi.org/10.3390/w16060824 DOI: https://doi.org/10.3390/w16060824
Gumindoga, W., Rientjes, T. H. M., Haile, A. T., Makurira, H., & Reggiani, P. (2019). Performance of Bias-Correction Schemes for CMORPH Rainfall Estimates in the Zambezi River Basin. Hydrology and Earth System Sciences. https://doi.org/10.5194/hess-23-2915-2019 DOI: https://doi.org/10.5194/hess-23-2915-2019
Gyawali, B., Shrestha, S., Bhatta, A., Pokhrel, B., Cristan, R., Antonious, G., Banerjee, S., & Paudel, K. P. (2022). Assessing the Effect of Land-Use and Land-Cover Changes on Discharge and Sediment Yield in a Rural Coal-Mine Dominated Watershed in Kentucky, USA. Water, 14(4), 516. https://doi.org/10.3390/w14040516 DOI: https://doi.org/10.3390/w14040516
Habib, E., Haile, A., Sazib, N., Zhang, Y., & Rientjes, T. (2014). Effect of Bias Correction of Satellite-Rainfall Estimates on Runoff Simulations at the Source of the Upper Blue Nile. Remote Sensing, 6(7), 6688–6708. https://doi.org/10.3390/rs6076688 DOI: https://doi.org/10.3390/rs6076688
Hordofa, A. T., Leta, O. T., Alamirew, T., Kawo, N. S., & Chukalla, A. D. (2021). Performance Evaluation and Comparison of Satellite-Derived Rainfall Datasets over the Ziway Lake Basin, Ethiopia. Climate, 9(7), 113. https://doi.org/10.3390/cli9070113 DOI: https://doi.org/10.3390/cli9070113
Istiyati, S., Marmoah, S., Poerwanti, J. I. S., Supianto, Sukarno, & Mahfud, H. (2023). Comparative Study of Education for Children with Special Needs in Malaysia and Indonesian Primary School. Jurnal Penelitian Pendidikan IPA, 9(10), 7903–7908. https://doi.org/10.29303/jppipa.v9i10.5210 DOI: https://doi.org/10.29303/jppipa.v9i10.5210
Khatakho, R., Firoz, A., Elagib, N. A., & Fink, M. (2024). Hydrological Modelling Using Gridded and Ground‐Based Precipitation Datasets in Data‐Scarce Mountainous Regions. Hydrological Processes, 38(12). https://doi.org/10.1002/hyp.70024 DOI: https://doi.org/10.1002/hyp.70024
Kimani, M., Hoedjes, J., & Su, Z. (2017). An Assessment of Satellite-Derived Rainfall Products Relative to Ground Observations over East Africa. Remote Sensing, 9(5), 430. https://doi.org/10.3390/rs9050430 DOI: https://doi.org/10.3390/rs9050430
Kimani, M. W., Hoedjes, J. C. B., & Su, Z. (2018). Bayesian Bias Correction of Satellite Rainfall Estimates for Climate Studies. Remote Sensing, 10(7), 1074. https://doi.org/10.3390/rs10071074 DOI: https://doi.org/10.3390/rs10071074
Kouchi, D. H., Esmaili, K., Faridhosseini, A., Sanaeinejad, S. H., Khalili, D., & Abbaspour, K. C. (2017). Sensitivity of Calibrated Parameters and Water Resource Estimates on Different Objective Functions and Optimization Algorithms. Water, 9(6), 384. https://doi.org/10.3390/w9060384 DOI: https://doi.org/10.3390/w9060384
Laksita, G. D., Pusporini, W., Mutiara, E., Zafrullah, Z., & Zamzami, Z. (2024). Implementation of STEM Education in Schools: A Bibliometric Analysis (2003-2024). Jurnal Penelitian Pendidikan IPA, 10(12), 944–959. https://doi.org/10.29303/jppipa.v10i12.8815 DOI: https://doi.org/10.29303/jppipa.v10i12.8815
Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, & T. L. Veith. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153 DOI: https://doi.org/10.13031/2013.23153
Muthoni, F. K., Odongo, V. O., Ochieng, J., Mugalavai, E. M., Mourice, S. K., Hoesche-Zeledon, I., Mwila, M., & Bekunda, M. (2019). Long-term spatial-temporal trends and variability of rainfall over Eastern and Southern Africa. Theoretical and Applied Climatology, 137(3–4), 1869–1882. https://doi.org/10.1007/s00704-018-2712-1 DOI: https://doi.org/10.1007/s00704-018-2712-1
Ningrum, W., Santoso, H., Marganingrum, D., Narulita, I., Rusydi, A. F., & Purwoarminta, A. (2025). Comparative Analysis of CHIRPS, TRMM, and GSMaP Rainfall Data on Pari Island. IOP Conference Series: Earth and Environmental Science, 1462(1), 012062. https://doi.org/10.1088/1755-1315/1462/1/012062 DOI: https://doi.org/10.1088/1755-1315/1462/1/012062
Rajkovic, M., Zrnic, N., Kosanic, N., Borovinsek, M., & Lerher, T. (2017). A multi-objective optimization model for minimizing cost, travel time and Co2 emission in an AS/RS. FME Transaction, 45(4), 620–629. https://doi.org/10.5937/fmet1704620R DOI: https://doi.org/10.5937/fmet1704620R
Soewarno. (1995). Hidrologi Aplikasi Metode Statistik untuk Analisa Data (1st ed.). Bandung: Nova.
Sriwongsitanon, N., Kaprom, C., Tantisuvanichkul, K., Prasertthonggorn, N., Suiadee, W., Bastiaanssen, W. G. M., & Williams, J. A. (2023). The Combined Power of Double Mass Curves and Bias Correction for the Maximisation of the Accuracy of an Ensemble Satellite-Based Precipitation Estimate Product. Hydrology, 10(7), 154. https://doi.org/10.3390/hydrology10070154 DOI: https://doi.org/10.3390/hydrology10070154
Sugiyono. (2021). Metode Penelitian Pendidikan. Bandung: Alfabeta.
Supari, Tangang, F., Juneng, L., & Aldrian, E. (2017). Observed changes in extreme temperature and precipitation over Indonesia. International Journal of Climatology, 37(4), 1979–1997. https://doi.org/10.1002/joc.4829 DOI: https://doi.org/10.1002/joc.4829
Usman, M., Nichol, J. E., Ibrahim, A. T., & Buba, L. F. (2018). A spatio-temporal analysis of trends in rainfall from long term satellite rainfall products in the Sudano Sahelian zone of Nigeria. Agricultural and Forest Meteorology, 260–261, 273–286. https://doi.org/10.1016/j.agrformet.2018.06.016 DOI: https://doi.org/10.1016/j.agrformet.2018.06.016
Virgota, A., Farista, B., Suripto, Gunawan, L. A., & Ernawati. (2024). Identification and Mapping of Flood Vulnerability in the Meninting Watershed, West Lombok. Jurnal Penelitian Pendidikan IPA, 10(7), 3759–3769. https://doi.org/10.29303/jppipa.v10i7.8201 DOI: https://doi.org/10.29303/jppipa.v10i7.8201
Zaini, A. Z. A., Vonnisa, M., Marzuki, M., & Ramadhan, R. (2023). Seasonal Variation of Rainfall in Indonesia under Normal Conditions without ENSO and IOD Events from 1981-2021. Jurnal Penelitian Pendidikan IPA, 9(11), 9899–9909. https://doi.org/10.29303/jppipa.v9i11.4569 DOI: https://doi.org/10.29303/jppipa.v9i11.4569
Zargar, M., Bronstert, A., Francke, T., Zimale, F. A., Worku, K. B., Wiegels, R., Lorenz, C., Hageltom, Y., Sawadogo, W., & Kunstmann, H. (2025). Comparison and hydrological evaluation of different precipitation data for a large tropical region: the Blue Nile Basin in Ethiopia. Frontiers in Water, 7. https://doi.org/10.3389/frwa.2025.1536881 DOI: https://doi.org/10.3389/frwa.2025.1536881
Zeng, W., Ding, X., Sun, W., & Mu, X. (2023). Improvement of satellite‐based rainfall product CHIRPS in estimating rainfall erosivity on the Loess Plateau. Land Degradation & Development, 34(15), 4517–4528. https://doi.org/10.1002/ldr.4790 DOI: https://doi.org/10.1002/ldr.4790
License
Copyright (c) 2025 Nafisah Zahrani, Ery Suhartanto, Ussy Andawayanti

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






