Integration of Log Analysis and Dutta Crossplot to Identify Overpressure Zones and Hydrocarbon Potential in the Kujung and Ngimbang Formations
DOI:
10.29303/jppipa.v11i11.13264Published:
2025-11-25Downloads
Abstract
The North East Java Basin is one of the prospective hydrocarbon areas in Indonesia with the Kujung and Ngimbang Formations as the main intervals of the petroleum system. This study aims to identify the mechanism of overpressure formation and reservoir potential based on well log data analysis. The methods used include interpretation of Gamma Ray (GR), Resistivity (ILD), Neutron porosity (NPHI), and Bulk Density (RHOB) logs, as well as pore pressure estimation using the Eaton method. The analysis results indicate that the Kujung Formation has two prospective zones at depths of 4200–4800 ft and 7500–8500 ft indicating a gas-bearing carbonate reservoir, while the Ngimbang Formation is dominated by shale and dense carbonate that function as cap and source rocks. The beginning of the overpressure zone was detected at a depth of approximately 4400 ft, characterized by anomalies in the NPHI, RHOB, and Δt logs indicating undercompaction. Dutta crossplot analysis (DT–RHOB) confirmed the dominance of smectite minerals indicating that the overpressure was formed due to a loading mechanism. Thus, the Kujung Formation acts as a porous reservoir zone, while the Ngimbang Formation functions as a cap rock in the North East Java Basin petroleum system.
Keywords:
Kujung formation, Loading mechanism, Ngimbang formation, Overpressure, UndercompactionReferences
Ahmed, M. A., Hegab, O. A., & Sabry, A. (2016). Early detection enhancement of the kick and near-balance drilling using mud logging warning sign. Egyptian Journal of Basic and Applied Sciences, 3(1), 85–93. https://doi.org/10.1016/j.ejbas.2015.09.006
Amjad, M. R., Zafar, M., Ahmad, T., Hussain, M., & Shakir, U. (2022). Overpressures Induced by Compaction Disequilibrium Within Structural Compartments of Murree Formation, Eastern Potwar, Pakistan. Frontiers in Earth Science, 10, 903405. https://doi.org/10.3389/feart.2022.903405
Asfha, D. T., Gebretsadik, H. T., Latiff, A. H. A., & Rahmani, O. (2024). Predictive pore pressure modeling using well-log data in the West Baram Delta, offshore Sarawak Basin, Malaysia. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 10(1), 196. https://doi.org/10.1007/s40948-024-00903-5
Bahi Dos Santos, C., Stallivière Corrêa, I., Weschenfelder, J., & Stone, J. R. (2025). Grain-size parameters and diatom records as indicators of environmental changes along the southern Brazilian coastal plain. International Journal of Sediment Research, 40(2), 269–285. https://doi.org/10.1016/j.ijsrc.2025.01.005
Bilal, A., Yang, R., Mughal, M. S., Janjuhah, H. T., Zaheer, M., & Kontakiotis, G. (2022). Sedimentology and Diagenesis of the Early–Middle Eocene Carbonate Deposits of the Ceno-Tethys Ocean. Journal of Marine Science and Engineering, 10(11), 1794. https://doi.org/10.3390/jmse10111794
Chen, Y., Sun, T., Yang, J., Chen, X., Ren, L., Wen, Z., Jia, S., Wang, W., Wang, S., & Zhang, M. (2025). Prediction of Mud Weight Window Based on Geological Sequence Matching and a Physics-Driven Machine Learning Model for Pre-Drilling. Processes, 13(7), 2255. https://doi.org/10.3390/pr13072255
Dong, S., Shalaby, M., & Islam, Md. (2018). Integrated Reservoir Characterization Study of the McKee Formation, Onshore Taranaki Basin, New Zealand. Geosciences, 8(4), 105. https://doi.org/10.3390/geosciences8040105
Fahrudin & Yoga Aribowo. (2024). Review: Geological Structure impacts to hydrocarbon potential and active faults in the East Java Basin, Indonesia. Journal of Geoscience, Engineering, Environment, and Technology, 9(3), 379–383. https://doi.org/10.25299/jgeet.2024.9.3.16736
Guo, J., Ling, Z., Xu, X., Zhao, Y., Yang, C., Wei, B., Zhang, Z., Zhang, C., Tang, X., Chen, T., Li, G., & Zhao, Q. (2023). Saturation Determination and Fluid Identification in Carbonate Rocks Based on Well Logging Data: A Middle Eastern Case Study. Processes, 11(4), 1282. https://doi.org/10.3390/pr11041282
Hu, X., Meng, Q., Guo, F., Xie, J., Hasi, E., Wang, H., Zhao, Y., Wang, L., Li, P., Zhu, L., Pu, Q., & Feng, X. (2024). Deep learning algorithm-enabled sediment characterization techniques to determination of water saturation for tight gas carbonate reservoirs in Bohai Bay Basin, China. Scientific Reports, 14(1), 12179. https://doi.org/10.1038/s41598-024-63168-8
Huque, M. M., Imtiaz, S., Rahman, A., & Hossain, M. (2020). Kick detection and remedial action in managed pressure drilling: A review. SN Applied Sciences, 2(7), 1178. https://doi.org/10.1007/s42452-020-2962-2
Jintao, A., Jun, L., Huang, H., Zhang, H., Yang, H., Zhang, G., & Chen, S. (2025). An investigation into the impact of diapir structures on formation pressure systems: A case study of the Yinggehai Basin, China. Geothermal Energy, 13(1), 3. https://doi.org/10.1186/s40517-025-00332-x
Li, C., Zhan, L., & Lu, H. (2022). Mechanisms for Overpressure Development in Marine Sediments. Journal of Marine Science and Engineering, 10(4), 490. https://doi.org/10.3390/jmse10040490
Li, J., Qin, D., Yin, W., Wang, X., Dai, Y., Shi, H., & Fan, C. (2023). The Origin of Overpressure in the Pinghu Tectonic Zone of Xihu Depression and Its Relationship with Hydrocarbon Accumulation. Energies, 16(24), 8055. https://doi.org/10.3390/en16248055
Li, S., Zhou, P., & Lan, B. (2024). Study of wellbore instability in shale formation considering the effect of hydration on strength weakening. Frontiers in Earth Science, 12, 1403902. https://doi.org/10.3389/feart.2024.1403902
Li, Y., Hu, Z., Cai, C., Liu, X., Duan, X., Chang, J., Li, Y., Mu, Y., Zhang, Q., Zeng, S., & Guo, J. (2021). Evaluation method of water saturation in shale: A comprehensive review. Marine and Petroleum Geology, 128, 105017. https://doi.org/10.1016/j.marpetgeo.2021.105017
Ling, K., Wang, Z., Cao, Y., Liu, Y., & Dong, L. (2025). Clay Mineral Characteristics and Smectite-to-Illite Transformation in the Chang-7 Shale, Ordos Basin: Processes and Controlling Factors. Minerals, 15(9), 951. https://doi.org/10.3390/min15090951
Luisier, C., Baumgartner, L., Schmalholz, S. M., Siron, G., & Vennemann, T. (2019). Metamorphic pressure variation in a coherent Alpine nappe challenges lithostatic pressure paradigm. Nature Communications, 10(1), 4734. https://doi.org/10.1038/s41467-019-12727-z
Mkinga, O. J., Skogen, E., & Kleppe, J. (2020). Petrophysical interpretation in shaly sand formation of a gas field in Tanzania. Journal of Petroleum Exploration and Production Technology, 10(3), 1201–1213. https://doi.org/10.1007/s13202-019-00819-x
Pwavodi, J., Kelechi, I. N., Angalabiri, P., Emeremgini, S. C., & Oguadinma, V. O. (2023a). Pore pressure prediction in offshore Niger delta using data-driven approach: Implications on drilling and reservoir quality. Energy Geoscience, 4(3), 100194. https://doi.org/10.1016/j.engeos.2023.100194
Pwavodi, J., Kelechi, I. N., Angalabiri, P., Emeremgini, S. C., & Oguadinma, V. O. (2023b). Pore pressure prediction in offshore Niger delta using data-driven approach: Implications on drilling and reservoir quality. Energy Geoscience, 4(3), 100194. https://doi.org/10.1016/j.engeos.2023.100194
Radwan, A. E. (2022). Drilling in Complex Pore Pressure Regimes: Analysis of Wellbore Stability Applying the Depth of Failure Approach. Energies, 15(21), 7872. https://doi.org/10.3390/en15217872
Ren, J., Xu, L., Shi, W., Yang, W., Wang, R., He, Y., & Du, H. (2022). Shallow Overpressure Formation in the Deep Water Area of the Qiongdongnan Basin, China. Frontiers in Earth Science, 10, 922802. https://doi.org/10.3389/feart.2022.922802
Shabangu, P. P., Magoba, M., & Opuwari, M. (2025). Pore Pressure Prediction and Fluid Contact Determination: A Case Study of the Cretaceous Sediments in the Bredasdorp Basin, South Africa. Applied Sciences, 15(13), 7154. https://doi.org/10.3390/app15137154
Sun, F., Sun, J., Zeng, X., Yuan, W., Zhang, J., Yan, W., & Yan, W. (2022). Analysis of the Influencing Factors on Electrical Properties and Evaluation of Gas Saturation in Marine Shales: A Case Study of the Wufeng-Longmaxi Formation in Sichuan Basin. Frontiers in Earth Science, 10, 824352. https://doi.org/10.3389/feart.2022.824352
Suryana, E., Hutasoit, L. M., Ramdhan, A. M., Nugroho, D., & Arifin, A. (2023). Pore Pressure and Compartmentalization of Carbonate Reservoirs in Northern Madura Platform—East Java Basin, Indonesia. Indonesian Journal on Geoscience, 10(3), 297–307. https://doi.org/10.17014/ijog.10.3.297-307
Syah, M. H. F., Kano, A., Iizuka, T., & Kakizaki, Y. (2019). Depositional and diagenetic history of limestones and dolostones of the Oligo‐Miocene Kujung Formation in the Northeast Java Basin, Indonesia. Island Arc, 28(6), e12326. https://doi.org/10.1111/iar.12326
Tanikawa, W., Sakaguchi, M., Wibowo, H. T., Shimamoto, T., & Tadai, O. (2010). Fluid transport properties and estimation of overpressure at the Lusi mud volcano, East Java Basin. Engineering Geology, 116(1–2), 73–85. https://doi.org/10.1016/j.enggeo.2010.07.008
Ubuara, D. O., Olayinka, Y. A., Emujakporue, G. O., & Soronnadi-Ononiwu, G. C. (2024). Evaluation of formation susceptibility and sand production potential in an offshore field, Niger Delta Basin, Nigeria. Energy Geoscience, 5(1), 100213. https://doi.org/10.1016/j.engeos.2023.100213
Wahidaulhusna, S., & Sukmawati, F. D. (2025). Pore Pressure Predict Using Eaton Method and Sensitive Elastic Property Seismic of Overpressure Anomaly, Study Case: Poseidon Field, Browse Basin. IOP Conference Series: Earth and Environmental Science, 1458(1), 012001. https://doi.org/10.1088/1755-1315/1458/1/012001
Wakita, K., Murakami, T., Tsuji, T., & Urata, K. (2025). Geological and Geographical Characteristics of Limestone and Karst Landforms in Japan: Insights from Akiyoshidai, Seiyo (Shikoku), and Okinoerabu Island. Geosciences, 15(10), 393. https://doi.org/10.3390/geosciences15100393
Webb, M., Gough, A., & Endinanda, F. (2024). Depositional environments and sedimentary provenance of the Cenozoic deposits of Natuna Island, Indonesia: Implications for basin evolution in central Sundaland. Gondwana Research, 134, 298–325. https://doi.org/10.1016/j.gr.2024.06.022
Wu, J., Fan, T., Gomez-Rivas, E., Travé, A., Cao, Q., Gao, Z., Wang, S., & Kang, Z. (2022). Impact of diagenesis on the pore evolution and sealing capacity of carbonate cap rocks in the Tarim Basin, China. AAPG Bulletin, 106(12), 2471–2511. https://doi.org/10.1306/11082120136
Xu, Y., Yang, J., Hu, Z., Zhao, Q., Li, L., & Yin, Q. (2024). Causes of Multi-Mechanism Abnormal Formation Pressure in Offshore Oil and Gas Wells. Applied Sciences, 14(22), 10149. https://doi.org/10.3390/app142210149
Yang, T., Liu, D., Li, Y., Guo, X., Zhang, J., & Jiang, Y. (2021). Grain Configuration Effect on Pore Water Pressure in Debris Flow. Frontiers in Earth Science, 9, 660634. https://doi.org/10.3389/feart.2021.660634
Yusuf, M. F., Choiriah, S. U., Humairoh, W. A., Gutteres, S. A., Idea, K., & Amri, D. F. (2025). Porosity Analysis of Pliocene Limestone from the Mundu Formation Based on Core and Petrographic Analysis. Jurnal Penelitian Pendidikan IPA, 11(8), 282–291. https://doi.org/10.29303/jppipa.v11i8.12315
Zaputlyaeva, A., Mazzini, A., Blumenberg, M., Scheeder, G., Kürschner, W. M., Kus, J., Jones, M. T., & Frieling, J. (2020). Recent magmatism drives hydrocarbon generation in north-east Java, Indonesia. Scientific Reports, 10(1), 1786. https://doi.org/10.1038/s41598-020-58567-6
Zeng, S., Qiu, N., Li, H., Gao, J., Long, K., Jia, J., & Zhu, X. (2023). Generation and distribution of overpressure in ultra-deep carbonate reservoirs controlled by intra-cratonic strike-slip faults: The Ordovician of Shuntuoguole area in the Tarim Basin. Marine and Petroleum Geology, 158, 106515. https://doi.org/10.1016/j.marpetgeo.2023.106515
Zhao, K., Song, W., Deng, J., Tan, Q., & Wang, X. (2023). Evolution Law of Wellbore Instability Risk under Fluctuating Pressure. Energies, 16(7), 2948. https://doi.org/10.3390/en16072948
Zuza, A. V., Levy, D. A., & Mulligan, S. R. (2022). Geologic field evidence for non-lithostatic overpressure recorded in the North American Cordillera hinterland, northeast Nevada. Geoscience Frontiers, 13(2), 101099. https://doi.org/10.1016/j.gsf.2020.10.006
License
Copyright (c) 2025 Vina Wiryadinata, Abdul Haris

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






