Spatio-Temporal Analysis of Land Cover for Estimating UHI Using GEE in Gorontalo City
DOI:
10.29303/jppipa.v11i12.13297Published:
2025-12-31Downloads
Abstract
This study aims to analyze the spatio-temporal dynamics of land cover for estimating the Urban Heat Island (UHI) phenomenon using Google Earth Engine (GEE) in Gorontalo City.Multi-temporal Landsat 5/7/8/9 data were processed in GEE to derive NDVI, emissivity, and Land Surface Temperature (LST). The UHI index was calculated using the statistical threshold formula UHI = Ts − (μ + 0.5α), where values of zero or below (≤0) indicate non-UHI areas, while positive values (>0) represent areas affected by UHI. A correlation analysis was performed between field temperature, LST, and NDVI. Temporally, Gorontalo City exhibits the expansion and intensification of UHI over the 30-year period. The most evident changes are the increased area of the 0–1 and 1–2 classes enveloping the urban area, while the 2–3 class emerges as localized hotspots corresponding to areas of highest density. LST increased from 21–56 °C (1995) to 26–58 °C (2025), while NDVI declined in the city center but remained high in the southern–western zones and near water bodies. The surface temperature exhibits a strong correlation with vegetation conditions and field temperature. The main drivers of these dynamics were the increase in impervious surface fractions (asphalt/concrete) and the reduction of vegetative cover, which decreased latent heat (evapotranspiration) and increased sensible heat.
Keywords:
Google Earth Engine Normalized Difference Vegetation Index Emissivity Land Surface Temperature Land Cover Urban Heat IslandReferences
Adiningsih, E. S., Soenarmo, S. H., & Mujiasih, S. (2001). Kajian Perubahan Distribusi Spasial Suhu Udara Akibat. Jurnal Lapan, February, 29–44. https://www.researchgate.net/publication/271966779_kajian_perubahan_distribusi_spasial_suhu_udara_akibat_perubahan_penutup_lahan_Studi_Kasus_Cekungan_Bandung
Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13(September), 5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052 DOI: https://doi.org/10.1109/JSTARS.2020.3021052
Arnfield, A. J. (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23(1), 1–26. https://doi.org/10.1002/joc.859 DOI: https://doi.org/10.1002/joc.859
Bala, R., Prasad, R., & Yadav, V. P. (2021). Quantification of urban heat intensity with land use/land cover changes using Landsat satellite data over urban landscapes. Theoretical and Applied Climatology, 145(1–2). https://doi.org/10.1007/s00704-021-03610-3 DOI: https://doi.org/10.1007/s00704-021-03610-3
Bokaie, M., Zarkesh, M. K., Arasteh, P. D., & Hosseini, A. (2016). Assessment of Urban Heat Island based on the relationship between land surface temperature and Land Use/ Land Cover in Tehran. Sustainable Cities and Society, 23, 94–104. https://doi.org/10.1016/j.scs.2016.03.009 DOI: https://doi.org/10.1016/j.scs.2016.03.009
Bornstein, R., & Lin, Q. (2000). Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmospheric Environment, 34(3), 507–516. https://doi.org/10.1016/S1352-2310(99)00374-X DOI: https://doi.org/10.1016/S1352-2310(99)00374-X
Chatterjee, U., & Majumdar, S. (2022). Impact of land use change and rapid urbanization on urban heat island in Kolkata city : A remote sensing based perspective. Journal of Urban Management, 11(1), 59–71. https://doi.org/10.1016/j.jum.2021.09.002 DOI: https://doi.org/10.1016/j.jum.2021.09.002
Duka, M., Lihawa, F., & Rahim, S. (2020). Perubahan Tutupan Lahan dan Pengaruhnya Terhadap Pola Persebaran Suhu di Kota Gorontalo. Jambura Geoscience Review, 2(1), 16–29. https://doi.org/10.34312/jgeosrev.v2i1.2682 DOI: https://doi.org/10.34312/jgeosrev.v2i1.2682
Ermida, S. L., Soares, P., Mantas, V., Göttsche, F. M., & Trigo, I. F. (2020). Google earth engine open-source code for land surface temperature estimation from the landsat series. Remote Sensing, 12(9), 1–21. https://doi.org/10.3390/RS12091471 DOI: https://doi.org/10.3390/rs12091471
Estoque, R. C., Murayama, Y., & Myint, S. W. (2017). Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Science of the Total Environment, 577, 349–359. https://doi.org/10.1016/j.scitotenv.2016.10.195 DOI: https://doi.org/10.1016/j.scitotenv.2016.10.195
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 DOI: https://doi.org/10.1016/j.rse.2017.06.031
Hassan, T., Zhang, J., Prodhan, F. A., Pangali Sharma, T. P., & Bashir, B. (2021). Surface urban heat islands dynamics in response to lulc and vegetation across south asia (2000–2019). Remote Sensing, 13(16), 1–24. https://doi.org/10.3390/rs13163177 DOI: https://doi.org/10.3390/rs13163177
He, J. F., Liu, J. Y., Zhuang, D. F., Zhang, W., & Liu, M. L. (2007). Assessing the effect of land use/land cover change on the change of urban heat island intensity. Theoretical and Applied Climatology, 90(3–4), 217–226. https://doi.org/10.1007/s00704-006-0273-1 DOI: https://doi.org/10.1007/s00704-006-0273-1
Igun, E. (2017). Analysis and Sustainable Management of Urban Growth’s Impact on Land Surface Temperature in Lagos, Nigeria. Journal of Remote Sensing & GIS, 06(04). https://doi.org/10.4172/2469-4134.1000212 DOI: https://doi.org/10.4172/2469-4134.1000212
Imhoff, M. L., Zhang, P., Wolfe, R. E., & Bounoua, L. (2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment, 114(3), 504–513. https://doi.org/10.1016/j.rse.2009.10.008 DOI: https://doi.org/10.1016/j.rse.2009.10.008
Insan, K., & Rahmi, N. (2024). The use of Landsat-8 in Google Earth Engine to analyze Urban The use of Landsat-8 in Google Earth Engine to analyze Urban Heat Island in Bogor City. 29(2). https://doi.org/10.17977/um017v29i22024p121-134 DOI: https://doi.org/10.17977/um017v29i22024p121-134
Kafer, P. S., Rolim, S. B. A., Iglesias, M. L., Da Rocha, N. S., & Diaz, L. R. (2019). Land surface temperature retrieval by landsat 8 thermal band: Applications of laboratory and field measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7), 2332–2341. https://doi.org/10.1109/JSTARS.2019.2913822 DOI: https://doi.org/10.1109/JSTARS.2019.2913822
Kandel, H., Melesse, A., & Whitman, D. (2016). An analysis on the urban heat island effect using radiosonde profiles and Landsat imagery with ground meteorological data in South Florida. International Journal of Remote Sensing, 37(10), 2313–2337. https://doi.org/10.1080/01431161.2016.1176270 DOI: https://doi.org/10.1080/01431161.2016.1176270
Kikon, N., Singh, P., Singh, S. K., & Vyas, A. (2016). Assessment of urban heat islands (UHI) of Noida City, India using multi-temporal satellite data. Sustainable Cities and Society, 22, 19–28. https://doi.org/10.1016/j.scs.2016.01.005 DOI: https://doi.org/10.1016/j.scs.2016.01.005
Kotharkar, R., & Bagade, A. (2018). Local Climate Zone classification for Indian cities: A case study of Nagpur. Urban Climate, 24, 369–392. https://doi.org/10.1016/j.uclim.2017.03.003 DOI: https://doi.org/10.1016/j.uclim.2017.03.003
Koto, A. G. (2015). Analisis suhu permukaan Kota Gorontalo dan sekitarnya menggunakan saluran thermal Citra Landsat 7 ETM +. Prosiding Seminar Nasional Penginderaan Jauh, 4(1), 336–343.
Li, L., Zha, Y., & Zhang, J. (2020). Spatially non-stationary effect of underlying driving factors on surface urban heat islands in global major cities. International Journal of Applied Earth Observation and Geoinformation, 90(August 2019), 102131. https://doi.org/10.1016/j.jag.2020.102131 DOI: https://doi.org/10.1016/j.jag.2020.102131
Liu, B., Guo, X., & Jiang, J. (2023). How Urban Morphology Relates to the Urban Heat Island Effect: A Multi-Indicator Study. Sustainability (Switzerland), 15(14). https://doi.org/10.3390/su151410787 DOI: https://doi.org/10.3390/su151410787
Ming, T., Liu, Y., Shi, T., Peng, C., Chen, Y., de Richter, R., & Fang, Y. (2024). Numerical investigation of urban heat island effect in various urban forms. Energy and Built Environment, February. https://doi.org/10.1016/j.enbenv.2024.11.001 DOI: https://doi.org/10.1016/j.enbenv.2024.11.001
Mirzaei, P. A. (2015). Recent challenges in modeling of urban heat island. Sustainable Cities and Society, 19, 200–206. https://doi.org/10.1016/j.scs.2015.04.001 DOI: https://doi.org/10.1016/j.scs.2015.04.001
Mirzaei, P. A., Haghighat, F., Nakhaie, A. A., Yagouti, A., Giguère, M., Keusseyan, R., & Coman, A. (2012). Indoor thermal condition in urban heat Island - Development of a predictive tool. Building and Environment, 57, 7–17. https://doi.org/10.1016/j.buildenv.2012.03.018 DOI: https://doi.org/10.1016/j.buildenv.2012.03.018
Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of Environmental Management, 197(January), 522–538. https://doi.org/10.1016/j.jenvman.2017.03.095 DOI: https://doi.org/10.1016/j.jenvman.2017.03.095
Mora, C., Dousset, B., Caldwell, I. R., Powell, F. E., Geronimo, R. C., Bielecki, C. R., Counsell, C. W. W., Dietrich, B. S., Johnston, E. T., Louis, L. V., Lucas, M. P., Mckenzie, M. M., Shea, A. G., Tseng, H., Giambelluca, T. W., Leon, L. R., Hawkins, E., & Trauernicht, C. (2017). Global risk of deadly heat. Nature Climate Change, 7(7), 501–506. https://doi.org/10.1038/nclimate3322 DOI: https://doi.org/10.1038/nclimate3322
Oke, T. R. (1982). The energetic basis of the urban heat island,” Quarterly Journal of the Royal Meteorological Society. In Journal of Royal Meteorological Society (Vol. 108, pp. 1–24). DOI: https://doi.org/10.1002/qj.49710845502
Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F. M., Nan, H., Zhou, L., & Myneni, R. B. (2012). Surface urban heat island across 419 global big cities. Environmental Science and Technology, 46(2), 696–703. https://doi.org/10.1021/es2030438 DOI: https://doi.org/10.1021/es2030438
Prayogi, H., Setiadi, H., Supriatna, S., & Dewayany, D. (2024). Land cover change analysis in Majalengka Regency using the pan-sharpening method and random forest machine learning algorithm. Jurnal Pendidikan Geografi: Kajian, Teori, Dan Praktek Dalam Bidang Pendidikan Dan Ilmu Geografi, 28(2), 178–192. https://doi.org/10.17977/um017v28i22023p178-192 DOI: https://doi.org/10.17977/um017v28i22023p178-192
Ravanelli, R., Nascetti, A., Cirigliano, R. V., Di Rico, C., Leuzzi, G., Monti, P., & Crespi, M. (2018). Monitoring the impact of land cover change on surface urban heat island through Google Earth Engine: Proposal of a global methodology, first applications and problems. Remote Sensing, 10(9), 1–21. https://doi.org/10.3390/rs10091488 DOI: https://doi.org/10.3390/rs10091488
Scafetta, N., & Ouyang, S. (2019). Detection of UHI bias in China climate network using Tmin and Tmax surface temperature divergence. Global and Planetary Change, 181(July), 102989. https://doi.org/10.1016/j.gloplacha.2019.102989 DOI: https://doi.org/10.1016/j.gloplacha.2019.102989
Sekertekin, A., Kutoglu, S. H., & Kaya, S. (2016). Evaluation of spatio-temporal variability in Land Surface Temperature: A case study of Zonguldak, Turkey. Environmental Monitoring and Assessment, 188(1), 1–15. https://doi.org/10.1007/s10661-015-5032-2 DOI: https://doi.org/10.1007/s10661-015-5032-2
Sharma, R., Pradhan, L., Kumari, M., & Bhattacharya, P. (2021). Assessing urban heat islands and thermal comfort in Noida City using geospatial technology. Urban Climate, 35(October 2020), 100751. https://doi.org/10.1016/j.uclim.2020.100751 DOI: https://doi.org/10.1016/j.uclim.2020.100751
Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(4), 434–440. https://doi.org/10.1016/j.rse.2004.02.003 DOI: https://doi.org/10.1016/j.rse.2004.02.003
Sugini. (2014). Kenyamanan Termal Ruang (Konsep dan Penerapan pada Desain) (p. 251). https://fcep.uii.ac.id/karya-ilmiah/SUGINI/Buku - Kenyamanan Termal Ruang Konsep dan Penerapan pada Desain.pdf
Sultana, S., & Satyanarayana, A. N. V. (2018). Urban heat island intensity during winter over metropolitan cities of India using remote-sensing techniques: impact of urbanization. International Journal of Remote Sensing, 39(20), 6692–6730. https://doi.org/10.1080/01431161.2018.1466072 DOI: https://doi.org/10.1080/01431161.2018.1466072
Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 164(May), 152–170. https://doi.org/10.1016/j.isprsjprs.2020.04.001 DOI: https://doi.org/10.1016/j.isprsjprs.2020.04.001
Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., Zhen, X., Yuan, D., Kalkstein, A. J., Li, F., & Chen, H. (2010). The urban heat island and its impact on heat waves and human health in Shanghai. International Journal of Biometeorology, 54(1), 75–84. https://doi.org/10.1007/s00484-009-0256-x DOI: https://doi.org/10.1007/s00484-009-0256-x
Ullah, N., Siddique, M. A., Ding, M., Grigoryan, S., Khan, I. A., Kang, Z., Tsou, S., Zhang, T., Hu, Y., & Zhang, Y. (2023). The Impact of Urbanization on Urban Heat Island: Predictive Approach Using Google Earth Engine and CA-Markov Modelling (2005–2050) of Tianjin City, China. International Journal of Environmental Research and Public Health, 20(3). https://doi.org/10.3390/ijerph20032642 DOI: https://doi.org/10.3390/ijerph20032642
Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384. https://doi.org/10.1016/S0034-4257(03)00079-8 DOI: https://doi.org/10.1016/S0034-4257(03)00079-8
Weng, Q. (2009). Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4), 335–344. https://doi.org/10.1016/j.isprsjprs.2009.03.007 DOI: https://doi.org/10.1016/j.isprsjprs.2009.03.007
Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467–483. https://doi.org/10.1016/j.rse.2003.11.005 DOI: https://doi.org/10.1016/j.rse.2003.11.005
Yang, L., Qian, F., Song, D. X., & Zheng, K. J. (2016). Research on Urban Heat-Island Effect. Procedia Engineering, 169, 11–18. https://doi.org/10.1016/j.proeng.2016.10.002 DOI: https://doi.org/10.1016/j.proeng.2016.10.002
Yu, X., Guo, X., & Wu, Z. (2014). Land surface temperature retrieval from landsat 8 TIRS-comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sensing, 6(10), 9829–9852. https://doi.org/10.3390/rs6109829 DOI: https://doi.org/10.3390/rs6109829
Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594. https://doi.org/10.1080/01431160304987 DOI: https://doi.org/10.1080/01431160304987
Zhou, D., Zhao, S., Liu, S., Zhang, L., & Zhu, C. (2014). Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sensing of Environment, 152, 51–61. https://doi.org/10.1016/j.rse.2014.05.017 DOI: https://doi.org/10.1016/j.rse.2014.05.017
Zhou, Y., Zhuang, Z., Yang, F., Yu, Y., & Xie, X. (2017). Urban morphology on heat island and building energy consumption. Procedia Engineering, 205, 2401–2406. https://doi.org/10.1016/j.proeng.2017.09.862 DOI: https://doi.org/10.1016/j.proeng.2017.09.862
License
Copyright (c) 2025 La Ode Juni Akbar, Arthur Gani Koto, Ahmad Syamsu Rijal

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






