Vol. 11 No. 12 (2025): December
Open Access
Peer Reviewed

Waste Utilization for Neutralization of Acid Mine Drainage Using Fly Ash, Bottom Ash, and Goat Manure Granules

Authors

DOI:

10.29303/jppipa.v11i12.13312

Published:

2025-12-25

Downloads

Abstract

Acid mine drainage (AMD) is one of the most serious environmental impacts of mining, characterized by low pH and high metal content. This study aimed to evaluate the neutralization efficiency of waste-based granules made from fly ash, bottom ash (FABA), and goat manure for AMD treatment under laboratory conditions. Two types of granules were produced: (i) 45% fly ash, 45% bottom ash, and 10% cement; and (ii) 45% fly ash, 30% bottom ash, 15% goat manure, and 10% cement. Each type was applied at different volumes (10%, 30%, and 50%) and positions (bottom and suspended) for 48 hours. Results showed that granule type, volume, and placement significantly influenced pH neutralization and metal removal. The best performance was achieved by the suspended granule without manure at 50%, raising AMD pH from 2.45 to 9.17 within 3 hours, with 88.7% Fe and 66.5% Mn removal. XRD and Micro-XRF analyses confirmed that neutralization occurred through dissolution of Ca-based minerals and formation of calcite and gypsum. The study demonstrates that FABA granules offer a low-cost, sustainable option for AMD treatment and can serve as a contextual learning model in environmental and chemistry education, linking waste utilization with real-world applications of acid-base reactions and environmental sustainability.

Keywords:

AMD FABA Granules Manure pH neutralization

References

Agusta, H., Nisya, F. N., Iman, R. N., & Bilad, D. B. C. (2017). Granulation of coal fly ash by using different types of granule agents. In IOP Conference Series: Earth and Environmental Science (Vol. 65, No. 1, p. 012023). IOP Publishing. https://doi.org/10.1088/1755-1315/65/1/012023 DOI: https://doi.org/10.1088/1755-1315/65/1/012023

Akinwekomi, V., Kefeni, K. K., Maree, J. P., & Msagati, T. A. (2016). Integrated acid mine drainage treatment using Mg (OH) 2 or Mg (HCO3) 2 and Ca (OH) 2: Implications for separate removal of metals and sulphate. International Journal of mineral processing, 155, 83-90. https://doi.org/10.1016/j.minpro.2016.08.009 DOI: https://doi.org/10.1016/j.minpro.2016.08.009

Amegboleza, A. A., & Ülkü, M. A. (2025). Sustainable Energy Transition for the Mining Industry: A Bibliometric Analysis of Trends and Emerging Research Pathways. Sustainability, 17(5), 2292. https://doi.org/10.3390/su17052292 DOI: https://doi.org/10.3390/su17052292

Araripe, E., & Zeidler, V. G. Z. (2024). Advancing sustainable chemistry education: Insights from real-world case studies. Current Research in Green and Sustainable Chemistry, 9, 100436. https://doi.org/10.1016/j.crgsc.2024.100436 DOI: https://doi.org/10.1016/j.crgsc.2024.100436

Chan, W. S., Routh, J., Luo, C., Dario, M., Miao, Y., Luo, D., & Wei, L. (2021). Metal accumulations in aquatic organisms and health risks in an acid mine-affected site in South China. Environmental geochemistry and health, 43(11), 4415-4440. https://doi.org/10.1007/s10653-021-00923-0 DOI: https://doi.org/10.1007/s10653-021-00923-0

Dold, B. (2017). Acid rock drainage prediction: A critical review. Journal of Geochemical Exploration, 172, 120-132. https://doi.org/10.1016/j.gexplo.2016.09.014 DOI: https://doi.org/10.1016/j.gexplo.2016.09.014

de Paiva Magalhães, D., da Costa Marques, M. R., Baptista, D. F., & Buss, D. F. (2015). Metal bioavailability and toxicity in freshwaters. Environmental chemistry letters, 13(1), 69-87. https://doi.org/10.1007/s10311-015-0491-9 DOI: https://doi.org/10.1007/s10311-015-0491-9

Durães, N., Bobos, I., & Da Silva, E. F. (2017). Speciation and precipitation of heavy metals in high-metal and high-acid mine waters from the Iberian Pyrite Belt (Portugal). Environmental Science and Pollution Research, 24(5), 4562-4576. https://doi.org/10.1007/s11356-016-8161-4 DOI: https://doi.org/10.1007/s11356-016-8161-4

Festin, E. S., Tigabu, M., Chileshe, M. N., Syampungani, S., & Odén, P. C. (2019). Progresses in restoration of post-mining landscape in Africa. Journal of Forestry Research, 30(2), 381-396. https://doi.org/10.1007/s11676-018-0621-x DOI: https://doi.org/10.1007/s11676-018-0621-x

Husada, M. H., Fauzi, A. M., Mansur, I., & Suharyono, S. (2025). Application of floating fly ash-bottom ash for acid mine drainage remediation. Journal of Degraded and Mining Lands Management, 12(4), 8261-8271. https://orcid.org/0000-0001-5158-3996 DOI: https://doi.org/10.15243/jdmlm.2025.124.8261

Iakovleva, E., Mäkilä, E., Salonen, J., Sitarz, M., Wang, S., & Sillanpää, M. (2015). Acid mine drainage (AMD) treatment: neutralization and toxic elements removal with unmodified and modified limestone. Ecological Engineering, 81, 30-40. https://doi.org/10.1016/j.ecoleng.2015.04.046 DOI: https://doi.org/10.1016/j.ecoleng.2015.04.046

Jasansky, S., Lieber, M., Giljum, S., & Maus, V. (2023). An open database on global coal and metal mine production. Scientific data, 10(1), 52. https://doi.org/10.1038/s41597-023-01965-y DOI: https://doi.org/10.1038/s41597-023-01965-y

Jiao, Y., Zhang, C., Su, P., Tang, Y., Huang, Z., & Ma, T. (2023). A review of acid mine drainage: Formation mechanism, treatment technology, typical engineering cases and resource utilization. Process Safety and Environmental Protection, 170, 1240-1260. https://doi.org/10.1016/j.psep.2022.12.083 DOI: https://doi.org/10.1016/j.psep.2022.12.083

Kusdarini, E., Sania, P. R., & Budianto, A. (2024). Netralisasi Air Asam Tambang Menggunakan Pengolahan Aktif dan Pasif. Jurnal Ilmu Lingkungan, 22(3), 808-815. https://doi.org/10.14710/jil.22.3.808-815 DOI: https://doi.org/10.14710/jil.22.3.808-815

Laia, K. (2021). Lagi, Lubang Tambang Tewaskan Korban ke-40 di Kaltim. Retrieved from https://betahita.id/news/detail/6738/lagi-lubang-tambang-tewaskan-korban-ke-40-di-kaltim.html.

Ministry of Environment and Forestry (MoEF). (2022). Regulation No. 5 of 2022 on Wastewater Quality Standards. Jakarta: MoEF.

Mukherjee, S., Paramanik, M., Paramanik, S., Dasmodak, S., Rajak, P., & Ganguly, A. (2024). Acid Mine Drainage: A Silent Threat to Environmental Health and Its Journey Toward Sustainable Management. Ecosystem Management: Climate Change and Sustainability, 493-518. https://doi.org/10.1002/9781394231249. DOI: https://doi.org/10.1002/9781394231249.ch15

Muliawati, F.D. (2024). Jangan Kaget! Total Luas Pertambangan di RI Capai 9,1 Juta Hektare. Retrieved from https://www.cnbcindonesia.com/news/20241112152816-4-587606/jangan-kaget-total-luas-pertambangan-di-ri-capai-91-juta-hektare.

Nordstrom, D. K., Blowes, D. W., & Ptacek, C. J. (2015). Hydrogeochemistry and microbiology of mine drainage: An update. Applied Geochemistry, 57, 3–16. https://doi.org/10.1016/j.apgeochem.2015.02.008 DOI: https://doi.org/10.1016/j.apgeochem.2015.02.008

Oktariani, P., Putri, A., & Situmorang, S. (2025). Reclamation Technology for Coal Post-Mining Land Contaminated by Acid Mine Drainage (AMD). Jurnal Pengelolaan Lingkungan Pertambangan, 2(1), 56-65. https://doi.org/10.70191/jplp.v2i1.62331 DOI: https://doi.org/10.70191/jplp.v2i1.62331

Otunola, B. O., & Mhangara, P. (2024). Global advancements in the management and treatment of acid mine drainage. Applied Water Science, 14(9), 204. https://doi.org/10.1007/s13201-024-02259-3 DOI: https://doi.org/10.1007/s13201-024-02259-3

Parbhakar-Fox, A., & Lottermoser, B. (2016). Principles of sulfide oxidation and acid rock drainage. In Environmental Indicators in Metal Mining (pp. 15-34). Cham: Springer International Publishing. Retrieved from https://link.springer.com/chapter/10.1007/978-3-319-42731-7_2 DOI: https://doi.org/10.1007/978-3-319-42731-7_2

Pavolova, H., Čulková, K., Šimková, Z., Seňová, A., & Kudelas, D. (2022). Contribution of mining industry in chosen EU countries to the sustainability issues. Sustainability, 14(7), 4177. https://doi.org/10.3390/su14074177 DOI: https://doi.org/10.3390/su14074177

Plante, B., Schudel, G., & Benzaazoua, M. (2021). Generation of acid mine drainage. Hard rock mine reclamation: from prediction to management of acid mine drainage, 1-20. https://doi.org/10.1201/9781315166698 DOI: https://doi.org/10.1201/9781315166698/-1

Pope, J., Christenson, H., Gordon, K., Newman, N. and Trumm, D. (2018). Decrease in acid mine drainage release rate from mine pit walls in Brunner Coal Measures. New Zealand Journal of Geology and Geophysics 61(2): 195-206. https://doi.org/10.1080/00288306.2018.1448289 DOI: https://doi.org/10.1080/00288306.2018.1448289

Pratinthong, N., Sangchan, S., Chimupala, Y., & Kijjanapanich, P. (2021). Sulfate removal from lignite coal mine drainage in Thailand using ettringite precipitation. Chemosphere, 285, 131357. https://doi.org/10.1016/j.chemosphere.2021.131357 DOI: https://doi.org/10.1016/j.chemosphere.2021.131357

Qureshi, A., Jia, Y., Maurice, C., & Öhlander, B. (2016). Potential of fly ash for neutralisation of acid mine drainage. Environmental Science and Pollution Research, 23(17), 17083-17094. https://doi.org/10.1007/s11356-016-6862-3 DOI: https://doi.org/10.1007/s11356-016-6862-3

Raletsena, M. V., & Mongalo, N. I. (2024). The possible application of fly ash (FA) to ameliorate acid mine water (AMD) for irrigation of potato (Solanum tuberosum L.). Heliyon, 10(11). https://doi.org/10.1016/j.heliyon.2024.e32079 DOI: https://doi.org/10.1016/j.heliyon.2024.e32079

RoyChowdhury, A., Sarkar, D., & Datta, R. (2015). Remediation of acid mine drainage-impacted water. Current Pollution Reports, 1(3), 131-141. https://doi.org/10.1007/s40726-015-0011-3 DOI: https://doi.org/10.1007/s40726-015-0011-3

Saidy, A.R., Lestari, D.P., and Wulandari, N. (2024). Changes in properties of reclaimed-mine soil and metal accumulation in plants with application of coal fly ash. Journal of Degraded and Mining Lands Management, 11(3):5767–5778. https://doi.org/10.15243/jdmlm.2024.113.5767 DOI: https://doi.org/10.15243/jdmlm.2024.113.5767

Saidy, A. R., Priatmadi, B. J., Septiana, M., & Mulyawan, R. (2021). Improvement of pH and reduction of heavy metal concentrations in acid mine. Journal of Hunan University Natural Sciences, 48(10). Retrieved from https://www.jonuns.com/index.php/journal/article/view/807

Saputra, A., & Ramli, M. (2023). Mineralogical Studies of the Tanjung Iron Mine in the Bone, South Sulawesi: Implication for AMD Generation. In IOP Conference Series: Earth and Environmental Science (Vol. 1272, No. 1, p. 012036). IOP Publishing. https://doi.org/10.1088/1755-1315/1272/1/012036 DOI: https://doi.org/10.1088/1755-1315/1272/1/012036

Simate, G. S., & Ndlovu, S. (2021). Acid Mine Drainage: From Waste to Resources. CRC Press. DOI: https://doi.org/10.1201/9780429401985

Skousen, J., Zipper, C. E., Rose, A., Ziemkiewicz, P. F., Nairn, R., McDonald, L. M., & Kleinmann, R. L. (2017). Review of passive systems for acid mine drainage treatment. Mine Water and the Environment, 36(1), 133-153. https://doi.org/10.1007/s10230-016-0417-1 DOI: https://doi.org/10.1007/s10230-016-0417-1

Skousen, J. G., Ziemkiewicz, P. F., & McDonald, L. M. (2019). Acid mine drainage formation, control and treatment: Approaches and strategies. The Extractive Industries and Society, 6(1), 241-249. https://doi.org/10.1016/j.exis.2018.09.008 DOI: https://doi.org/10.1016/j.exis.2018.09.008

Susanto, E., Soedjono, E. S., & Titah, H. S. (2024). The impact of acid mine drainage on the environment and social society. IOP Conference Series: Earth and Environmental Science (Vol. 1388, No. 1, p. 012018). IOP Publishing. https://doi.org/10.1088/1755-1315/1388/1/012018 DOI: https://doi.org/10.1088/1755-1315/1388/1/012018

Thisani, S. K., Kallon, D. V. V., & Byrne, P. (2021). Effects of contact time and flow configuration on the acid mine drainage remediation capabilities of pervious concrete. Sustainability, 13(19), 10847. https://doi.org/10.3390/su131910847 DOI: https://doi.org/10.3390/su131910847

Venkateswarlu, K., Nirola, R., Kuppusamy, S., Thavamani, P., Naidu, R., & Megharaj, M. (2016). Abandoned metalliferous mines: ecological impacts and potential approaches for reclamation. Reviews in Environmental Science and Bio/Technology, 15(2), 327-354. https://doi.org/10.1007/s11157-016-9398-6 DOI: https://doi.org/10.1007/s11157-016-9398-6

Weinberg, R., Coyte, R., Wang, Z., Das, D., & Vengosh, A. (2022). Water quality implications of the neutralization of acid mine drainage with coal fly ash from India and the United States. Fuel, 330, 125675. https://doi.org/10.1016/j.fuel.2022.125675 DOI: https://doi.org/10.1016/j.fuel.2022.125675

Wright, I.A., Paciuszkiewicz, K. and Belmer, N. (2018). Increased water pollution after closure of Australia’s longest operating underground coal mine: a 13-month study of mine drainage, water chemistry and river ecology. Water, Air, & Soil Pollution 229(3): 55. Available at https://doi.org/10.1007/s11270-018-3718-0. DOI: https://doi.org/10.1007/s11270-018-3718-0

Yuan, J., Ding, Z., Bi, Y., Li, J., Wen, S., & Bai, S. (2022). Resource utilization of acid mine drainage (AMD): A review. Water, 14(15), 2385. https://doi.org/10.3390/w14152385 DOI: https://doi.org/10.3390/w14152385

Zvinowanda, & Caliphs. (2023). Recent development of active technologies for AMD treatment. Hybridized Technologies for the Treatment of Mining Effluents, 95-117. https://doi.org/10.1002/9781119896920.ch4 DOI: https://doi.org/10.1002/9781119896920.ch4

Author Biographies

Diah Permata Rinaldi, IPB University

Author Origin : Indonesia

Irdika Mansur, IPB University

Author Origin : Indonesia

Hamim, IPB University

Author Origin : Indonesia

Downloads

Download data is not yet available.

How to Cite

Rinaldi, D. P., Mansur, I., & Hamim. (2025). Waste Utilization for Neutralization of Acid Mine Drainage Using Fly Ash, Bottom Ash, and Goat Manure Granules. Jurnal Penelitian Pendidikan IPA, 11(12), 481–490. https://doi.org/10.29303/jppipa.v11i12.13312