Subsurface Instability Characterization Using the Microtremor HVSR Method for Landslide Risk Assessment in Sriharjo Village, Bantul, Yogyakarta, Indonesia
DOI:
10.29303/jppipa.v11i12.13313Published:
2026-01-09Downloads
Abstract
Sriharjo Village, Bantul, Yogyakarta, is affected by recurrent mass movements and slope deformations due to complex geological conditions and groundwater infiltration. This study aims to assess subsurface instability using the Horizontal-to-Vertical Spectral Ratio (HVSR) method. Fifty-three microtremor measurements were conducted along four survey lines, with each recording lasting approximately 20 minutes. The data were processed using Geopsy and Dinver software, employing spectral curve analysis to extract key subsurface parameters. The analysis yielded shear wave velocity (Vs), compressional wave velocity (Vp), Vp/Vs ratio, and Poisson’s ratio. Vs values below 750 m/s indicate soft, less consolidated materials, typically associated with unconsolidated sediments. High Vp/Vs ratios (>2.5) and Poisson’s ratios approaching 0.5 suggest elevated pore water content and low shear strength, indicating saturated and nearly incompressible conditions. Spatial patterns reveal subsurface fluid migration from the north toward the deformation zone, highlighting the role of groundwater infiltration and increased pore pressure in triggering slope instability. This study demonstrates that the interaction between pore pressure and lithological heterogeneity contributes significantly to the development of slip surfaces and ongoing deformation. The findings provide a geophysical framework applicable to slope stability assessment and landslide risk mitigation in vulnerable terrains such as Sriharjo Village.
Keywords:
Groundwater Infiltration Landslides Poisson's Ratio Slope Stability Wave VelocityReferences
Abdelrahman, K., Al-Amri, A. M., Al-Kahtany, K., & Al-Otaibi, N. (2023). Landslide susceptibility mapping of Al Taif urban area, Saudi Arabia, using remote sensing data and microtremor measurements: Integrated approach. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1270061 DOI: https://doi.org/10.3389/feart.2023.1270061
Akbar, D., Rosid, M. S., & Darmanto, A. N. (2024). Seismic Vulnerability Distribution in the Central Area of Surabaya City. Jurnal Penelitian Pendidikan IPA, 10(3), 1167-1174. https://doi.org/10.29303/jppipa.v10i3.6761 DOI: https://doi.org/10.29303/jppipa.v10i3.6761
Araque-Perez, C. J. (2024). Reevaluating soil amplification using multi-spectral HVSR technique in La Chana Neighborhood, Granada, Spain. Journal of Seismology, 28(4), 921–949. https://doi.org/10.1007/s10950-024-10227-2 DOI: https://doi.org/10.1007/s10950-024-10227-2
Baharuddin, F. Z., Kurniawan Suhardja, S., Pranata, B., & Prayitno Adi, S. (2023). Seismic microzonation based on HVSR inversion results for shear wave (Vs30) mapping and soil vulnerability in West Sulawesi and South Sulawesi Regions. E3S Web of Conferences, 464, 1006. https://doi.org/10.1051/e3sconf/202346401006 DOI: https://doi.org/10.1051/e3sconf/202346401006
Ciampi, P., Mangifesta, M., Giannini, L. M., Esposito, C., Scalella, G., Burchini, B., & Sciarra, N. (2025). Geophysical and Remote Sensing Techniques for Large-Volume and Complex Landslide Assessment. Remote Sensing, 17(12), 2029. https://doi.org/10.3390/rs17122029 DOI: https://doi.org/10.3390/rs17122029
Das, B. M., & Sivakugan, N. (2017). Fundamentals of geotechnical engineering (5th ed.). Cengage Learning.
Darmawan, C. J., Pranata, B., Sutrisno, & Anggun, E. (2023). Identification of soil characteristics in the Central Java Region using the HVSR (Horizontal to Vertical Spectral Ratio) inversion method. E3S Web of Conferences, 464, 14002. https://doi.org/10.1051/e3sconf/202346414002 DOI: https://doi.org/10.1051/e3sconf/202346414002
Eyinla, D., Oladunjoye, M. A., & Olayinka, I. (2021). Rock physics and geomechanical application in the interpretation of rock property trends for overpressure detection. Journal of Petroleum Exploration and Production Technology, 11. https://doi.org/10.1007/s13202-020-01039-4 DOI: https://doi.org/10.1007/s13202-020-01039-4
Fazriati, E., Azhari, M. R., Hakam, A., Utama, W., & Rosandi, Y. (2023). Horizontal to Vertical Spectral Ratio (HVSR) analysis of the passive seismic data on alluvial lithology: An example from Bandung Basin Rim. Jurnal Penelitian Pendidikan IPA, 9(1), 402-411. https://doi.org/10.29303/jppipa.v9i1.2962 DOI: https://doi.org/10.29303/jppipa.v9i1.2962
Fiolleau, S., Dafflon, B., Falco, N., & Uhlemann, S. (2023). Improving slope stability estimates by incorporating geophysical and remote sensing monitoring data into hydro-geomechanical modeling. EarthArXiv. https://doi.org/10.31223/X5CH2R DOI: https://doi.org/10.31223/X5CH2R
Foti, S., Hollender, F., & Garofalo, F., (2018) Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project. Bull Earthquake Eng, 16, 2367–2420. https://doi.org/10.1007/s10518-017-0206-7 DOI: https://doi.org/10.1007/s10518-017-0206-7
Erzagian, E., Wilopo, W., & Fathani, T. (2023). Landslide susceptibility zonation using GIS-based frequency ratio approach in the Kulon Progo Mountains Area, Indonesia. In Progress in Landslide Research and Technology, 115–126. https://doi.org/10.1007/978-3-031-44296-4_3 DOI: https://doi.org/10.1007/978-3-031-44296-4_3
Himi, M., Anton, M., Sendrós, A., Abancó, C., Ercoli, M., Lovera, R., Deidda, G. P., Urruela, A., Rivero, L., & Casas, A. (2022). Application of resistivity and seismic refraction tomography for landslide stability assessment in Vallcebre, Spanish Pyrenees. Remote Sensing, 14, 6333. https://doi.org/10.3390/rs14246333 DOI: https://doi.org/10.3390/rs14246333
Jia, J., Mao, C., & Tenorio, V. (2024). Slope stability considering multi-fissure seepage under rainfall conditions. Scientific Reports, 14. https://doi.org/10.1038/s41598-024-62387-3 DOI: https://doi.org/10.1038/s41598-024-62387-3
Keçeli, A. (2024). Soil parameters which can be determined with seismic velocities. Jeofizik, 16, 17–29.
Kim, J., Kang, J.-D., & Kim, B. (2023). Machine-learning models to predict P- and S-wave velocity profiles for Japan as an example. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1267386 DOI: https://doi.org/10.3389/feart.2023.1267386
Kumar, P., Muthuk Kumar, K., Sharma, C., Shukla, A., & Sharma, S. (2025). Rainfall-induced slope instability in tropical regions under climate change scenarios. Water, 17, 1392. https://doi.org/10.3390/w17091392 DOI: https://doi.org/10.3390/w17091392
Kulhawy, F.H. and Mayne, P.W. (1990), Manual on Estimating Soil Properties for Foundation Design, Electric Power Research Institude.
Kumar, V., Cauchie, L., Mreyen, A.-S., Micu, M., & Havenith, H.-B. (2021). Evaluating landslide response in a seismic and rainfall regime: A case study from the SE Carpathians, Romania. Natural Hazards and Earth System Sciences, 21(12), 3767–3788. https://doi.org/10.5194/nhess-21-3767-2021 DOI: https://doi.org/10.5194/nhess-21-3767-2021
Li, Y., Hu, Q., Wu, N., Wang, H., Sun, X., Hu, G., Sun, Z., & Jiang, Y. (2023). Acoustic characterization for creep behaviors of marine sandy hydrate-bearing sediment. Scientific Reports, 13. https://doi.org/10.1038/s41598-023-49523-1 DOI: https://doi.org/10.1038/s41598-023-49523-1
Liu, H., Su, H., Sun, L., & Dias-da-Costa, D. (2024). State-of-the-art review on the use of AI-enhanced computational mechanics in geotechnical engineering. Artificial Intelligence Review, 57(8), 196. https://doi.org/10.1007/s10462-024-10836-w DOI: https://doi.org/10.1007/s10462-024-10836-w
Liu, X., Beroza, G., & Li, H. (2023). Ambient noise differential adjoint tomography reveals fluid-bearing rocks near active faults in Los Angeles. Nature Communications, 14. https://doi.org/10.1038/s41467-023-42536-4 DOI: https://doi.org/10.1038/s41467-023-42536-4
Medwedeff, W. G., Clark, M. K., Zekkos, D., West, A. J., & Chamlagain, D. (2022). Near-surface geomechanical properties and weathering characteristics across a tectonic and climatic gradient in the Central Nepal Himalaya. Journal of Geophysical Research: Earth Surface, 127, https://doi.org/10.1029/2021JF006240 DOI: https://doi.org/10.1029/2021JF006240
Mokhtari, M. (2023). Natural Hazards. IntechOpen. https://doi.org/10.5772/intechopen.104005 DOI: https://doi.org/10.5772/intechopen.104005
Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of RTRI, 30.
Onyelowe, K., Ebid, A., Hanandeh, S., & Kamchoom, V. (2025). Evaluating the slope behavior for geophysical flow prediction with advanced machine learning combinations. Scientific Reports, 15. https://doi.org/10.1038/s41598-025-90882-8 DOI: https://doi.org/10.1038/s41598-025-90882-8
Ortiz Palacio, S., Ibanez García, S., Sancho Calderón, D., & Porres, J. (2023). Correlations between p-wave velocity and SPT-N for saturated and unsaturated alluvial clays using dimensional analysis. Soil Dynamics and Earthquake Engineering, 108401. https://doi.org/10.1016/j.soildyn.2023.108401 DOI: https://doi.org/10.1016/j.soildyn.2023.108401
Osawa, H., Okamoto, T., Matsushi, Y., & Matsuura, S. (2023). Semiempirical modeling of the transient response of pore pressure to rainfall and snowmelt in a dormant landslide. Landslides, 21, 1–12. https://doi.org/10.1007/s10346-023-02158-9 DOI: https://doi.org/10.1007/s10346-023-02158-9
Pourverdi, A, Doulati, F., Maghsoudy, F., Kafi, S., Taherdangko, R. and Reza (2025) ‘Coupled hydro-mechanical analysis and stabilization of a failing heap leaching structure’. Bulletin of Engineering Geology and the Environment, 84(11), 476. Available at: https://doi.org/10.1007/s10064-025-04487-6. DOI: https://doi.org/10.1007/s10064-025-04487-6
Putra, A. N., Jaenudin, J., Prasetya, N., Sugiarto, M., Sudarto, S., Prayogo, C., Maritimo, F., & Admajaya, F. (2025). Utilizing remote sensing and random forests to identify optimal land use scenarios and address the increase in landslide susceptibility. Sustainability, 17, 4227. https://doi.org/10.3390/su17094227 DOI: https://doi.org/10.3390/su17094227
Qaher, M., Mohammed Eldosouky, A., Saada, S., & Basheer, A. (2023). Integration of ERT and shallow seismic refraction for geotechnical investigation on El-Alamein Hotel Building Area, El-Alamein new city, Egypt. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 9. https://doi.org/10.1007/s40948-023-00639-8 DOI: https://doi.org/10.1007/s40948-023-00639-8
Sanny, T. A., Asrib, M. L., & Insani, A. Z. M. (2023). Soil Characterization using the Electrical Resistivity Tomography (ERT) Approach on Non-Typical Land of Ipomoea Batatas. Jurnal Penelitian Pendidikan IPA, 9(8), 6128–6135. https://doi.org/10.29303/jppipa.v9i8.4653 DOI: https://doi.org/10.29303/jppipa.v9i8.4653
Setyo Yuliatmoko, R., Dairoh, D., Fauzi Masykuri, A., Suryanto, W., & Rohadi, S. (2023). Site analysis using microtremor array for disaster mitigation of landslide in the Cianjur Aquatic Resort. E3S Web of Conferences, 468, 1005. https://doi.org/10.1051/e3sconf/202346801005 DOI: https://doi.org/10.1051/e3sconf/202346801005
Siddig Ali, O., Gamal, H., Elkatatny, S., & Abdulraheem, A. (2021). Real-time prediction of Poisson’s ratio from drilling parameters using machine learning tools. Scientific Reports, 11, 12611. https://doi.org/10.1038/s41598-021-92082-6 DOI: https://doi.org/10.1038/s41598-021-92082-6
Susilo, A., Juwono, A. M., Aprilia, F., Hisyam, F., Rohmah, S., & Hasan, M. F. R. (2023). Subsurface analysis using microtremor and resistivity to determine soil vulnerability and discovery of new local fault. Civil Engineering Journal (Iran), 9(9), 2286–2299. https://doi.org/10.28991/CEJ-2023-09-09-014 DOI: https://doi.org/10.28991/CEJ-2023-09-09-014
Susilo, A., Zulaikah, S., Pohan, A. F., Hasan, M. F. R., Hisyam, F., Rohmah, S., & Adhi, M. A. (2024). Vulnerability index assessment for mapping ground movements using the microtremor method as geological hazard mitigation. Civil Engineering Journal, 10(5), 1616–1626. https://doi.org/10.28991/CEJ-2024-010-05-017 DOI: https://doi.org/10.28991/CEJ-2024-010-05-017
Tsuji, T., Ikeda, T., Matsuura, R., Mukumoto, K., Hutapea, F., Kimura, T., Yamaoka, K., & Shinohara, M. (2021). Continuous monitoring system for safe management of CO2 storage and geothermal reservoirs. Scientific Reports, 11, 19120. https://doi.org/10.1038/s41598-021-97881-5 DOI: https://doi.org/10.1038/s41598-021-97881-5
Wagner, F., & Uhlemann, S. (2021). An overview of multimethod imaging approaches in environmental geophysics. Advances in Geophysics, 1. https://doi.org/10.1016/bs.agph.2021.06.001 DOI: https://doi.org/10.1016/bs.agph.2021.06.001
Wang, Z., Sun, C., & Wu, D. (2022). Near-surface site characterization based on joint iterative analysis of first-arrival and surface-wave data. Surveys in Geophysics, 44(2), 357. https://doi.org/10.1007/s10712-022-09747-8 DOI: https://doi.org/10.1007/s10712-022-09747-8
Wijayanti, P., Sholeh, S., & Muzaqi, F. (2025). Landslide hazard mapping using weight overlay based-GIS with multi-criteria evaluation techniques in Tawangmangu District, Indonesia. Geosfera Indonesia, 10, 81–97. https://doi.org/10.19184/geosi.v10i1.44539 DOI: https://doi.org/10.19184/geosi.v10i1.44539
Yan, Z.-W., Bai, Y.-L., Zhang, Q., & Zeng, J.-J. (2023). Experimental study on dynamic properties of flax fiber reinforced recycled aggregate concrete. Journal of Building Engineering, 80, 108135. https://doi.org/10.1016/j.jobe.2023.108135 DOI: https://doi.org/10.1016/j.jobe.2023.108135
Zakaria, M. T. (2023). Integrated analysis of geophysical methods for landslide characterization. Acta Geodynamica et Geomaterialia, 165–177. https://doi.org/10.13168/AGG.2023.0015 DOI: https://doi.org/10.13168/AGG.2023.0015
License
Copyright (c) 2025 Udi Harmoko, Gatot Yuliyanto, Irham Nurwidyanto, Sugeng Widada

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with Jurnal Penelitian Pendidikan IPA, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution 4.0 International License (CC-BY License). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Penelitian Pendidikan IPA.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).






